Improvement of esterification conversion by rapid pervaporation dehydration using a high-flux and acid-resistant MOR zeolite membrane

Author(s):  
Zhicheng Yan ◽  
Xiaowei Wu ◽  
Binghua Zhu ◽  
Yu Li ◽  
Tian Gui ◽  
...  
Keyword(s):  
2012 ◽  
Vol 51 (37) ◽  
pp. 12073-12080 ◽  
Author(s):  
Xiaojun Shu ◽  
Xuerui Wang ◽  
Qingqing Kong ◽  
Xuehong Gu ◽  
Nanping Xu

2021 ◽  
pp. 101014
Author(s):  
M. Miyamoto ◽  
Y. Sugimoto ◽  
D. Nishijima ◽  
M.J. Baldwin ◽  
R.P. Doerner ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 249
Author(s):  
Yasuhisa Hasegawa ◽  
Chie Abe ◽  
Mayumi Natsui ◽  
Ayumi Ikeda

The polycrystalline CHA-type zeolite layer with Si/Al = 18 was formed on the porous α-Al2O3 tube in this study, and the gas permeation properties were determined using single-component H2, CO2, N2, CH4, n-C4H10, and SF6 at 303–473 K. The membrane showed permeation behavior, wherein the permeance reduced with the molecular size, attributed to the effect of molecular sieving. The separation performances were also determined using the equimolar mixtures of N2–SF6, CO2–N2, and CO2–CH4. As a result, the N2/SF6 and CO2/CH4 selectivities were as high as 710 and 240, respectively. However, the CO2/N2 selectivity was only 25. These results propose that the high-silica CHA-type zeolite membrane is suitable for the separation of CO2 from CH4 by the effect of molecular sieving.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3260
Author(s):  
Kjell A. L. Koch-Mehrin ◽  
Sarah L. Bugby ◽  
John E. Lees ◽  
Matthew C. Veale ◽  
Matthew D. Wilson

Cadmium zinc telluride (CdZnTe) detectors are known to suffer from polarization effects under high photon flux due to poor hole transport in the crystal material. This has led to the development of a high-flux capable CdZnTe material (HF-CdZnTe). Detectors with the HF-CdZnTe material have shown promising results at mitigating the onset of the polarization phenomenon, likely linked to improved crystal quality and hole carrier transport. Better hole transport will have an impact on charge collection, particularly in pixelated detector designs and thick sensors (>1 mm). In this paper, the presence of charge sharing and the magnitude of charge loss were calculated for a 2 mm thick pixelated HF-CdZnTe detector with 250 μm pixel pitch and 25 μm pixel gaps, bonded to the STFC HEXITEC ASIC. Results are compared with a CdTe detector as a reference point and supported with simulations from a Monte-Carlo detector model. Charge sharing events showed minimal charge loss in the HF-CdZnTe, resulting in a spectral resolution of 1.63 ± 0.08 keV Full Width at Half Maximum (FWHM) for bipixel charge sharing events at 59.5 keV. Depth of interaction effects were shown to influence charge loss in shared events. The performance is discussed in relation to the improved hole transport of HF-CdZnTe and comparison with simulated results provided evidence of a uniform electric field.


Sign in / Sign up

Export Citation Format

Share Document