Numerical and experimental investigation of erosive wear in Francis runner blade optimized for sediment laden hydropower projects in Nepal

2022 ◽  
Vol 51 ◽  
pp. 101954
Author(s):  
Saroj Gautam ◽  
Nirmal Acharya ◽  
Ram Lama ◽  
Sailesh Chitrakar ◽  
Hari Prasad Neopane ◽  
...  
2010 ◽  
Vol 165 ◽  
pp. 91-96 ◽  
Author(s):  
Danuta Kotnarowska

The paper deals with experimental investigation of erosive wear of acrylic coating. The research was carried out on the erosive wear under the influence of alundum particles (grain size of 0.6 – 0.7 mm) striking the coatings at the angle of 45 degrees. It was established that intensity of the erosive wear (under the influence of free falling alundum particles) essentially depends on velocity of erosive particle at the moment of its impact against coating surface. For example, for the lowest velocity value (3.6 m/s) at the moment of impact, erosive wear intensity was equal to 0.4 mm/kg, while for the largest velocity value (5.3 m/s), the intensity doubled in magnitude. The characteristic of erosive wear intensity, depending on erosive particle velocity, was generated by using second-degree polynomial.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Arash Soltani Dehkharqani ◽  
Fredrik Engström ◽  
Jan-Olov Aidanpää ◽  
Michel J. Cervantes

Abstract The transient load fluctuations on the runner blades of prototype hydraulic turbines during load variations are one of the main causes of fatigue and eventual structural failure. A clear understanding of the dynamic loads on the runner blades is required to detect the source of the fluctuations. In this paper, an experimental investigation of vortex rope formation and mitigation in a prototype Kaplan turbine, namely, Porjus U9, is carried out. Synchronized unsteady pressure and strain measurements were performed on a runner blade during steady-state and load variation under off-cam condition. The normalized pressure fluctuation during load variations remained approximately within ±0.2Pref for all the pressure transducers installed on the blade pressure side and is even slightly lower during the transient cycle. Higher pressure fluctuations were found on the blade suction side, approximately four times higher than that of on the pressure side. The synchronous and asynchronous components of the vortex rope were clearly observed at the low discharge operating point and transient cycles. The spectral analysis of the pressure signals showed that the synchronous component appears before the asynchronous component during the load reduction, and it lasts longer during the load increase. These frequencies slightly change during the load variation. In addition, the results proved that the strain fluctuation component on the runner blade arises from the synchronous component of the vortex rope at low discharge while the asynchronous component influence is negligible.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Quamrul H. Mazumder ◽  
Siamack A. Shirazi ◽  
Brenton McLaury

Erosive wear damage of elbows due to solid particle impact has been recognized as a significant problem in several fluid handling industries. Solid particle erosion is a complex phenomenon due to different parameters causing material removal from the metal surface. The particle density, size, shape, velocity, concentration, impact angle, and impacting surface material properties are some of the major parameters. Among the various factors, the particle impact velocity has the greatest influence in erosion. The particle impact velocity and impact angles depend on the fluid velocity and fluid properties. The particle to particle, particle to fluid, and particle to wall interactions increase the complexity of the erosive wear behavior. In multiphase flow, the presence of different fluids and their corresponding spatial distribution of the phases, adds another dimension to the problem. Most of the previous investigations were focused on determination of erosion in terms of mass loss of the eroding surfaces without identifying the specific location of the maximum erosive wear. During this investigation, magnitude of erosion at different location of an elbow specimen was measured to determine the location of maximum erosion. Experimental investigation of erosion in single-phase and multiphase flows was conducted at different fluid velocities. Both mass loss and thickness loss measurements were taken to characterize erosion behavior and erosion patterns in an elbow. Experimental results showed different erosion behavior and location of maximum erosion damage in single-phase and multiphase flows. The locations of maximum wear due to erosion were also different for horizontal flow compared to vertical flow.


2013 ◽  
Vol 12 ◽  
pp. 76-79
Author(s):  
Sourabh Khurana ◽  
Dr Varun ◽  
Anoop Kumar

he present study has been carried out to investigate the effect of silt size, concentration, jet velocity, nozzle angle and operating hour on the erosive wear as well as on the performance of the Turgo impulse turbine in actual flow conditions. Samples of silt were collected from the Beas River (India) near the Pandoh dam. It has been found experimentally that silt parameters, nozzle angle and operating hour of the Turgo turbine increases the erosive wear rate in the turbine components causing efficiency loss in the Turgo impulse turbine and final breakdown of hydro turbines. Hydro Nepal; Journal of Water, Energy and Environment Vol. 12, 2013, January Page:76-79DOI: http://dx.doi.org/10.3126/hn.v12i0.9038 Uploaded Date : 10/29/2013


2014 ◽  
Vol 13 ◽  
pp. 72-75
Author(s):  
Sourabh Khurana ◽  
Varun Goel ◽  
Khushmeet Kumar ◽  
Muneesh Sethi

An experimental investigation in actual flow conditions has been carried out to study the effect of silt size, concentration, jet velocity, operating hours and nozzle angle on erosive wear of Turgo impulse turbine blades. Experiments have shown that maximum erosion occurs at nozzle angle of 20ο for silt size 370 μm and silt concentration of 12000 ppm. During the experiments it has been observed that erosive wear depends on silt size, silt concentration, nozzle angle and operating hours of turbine. A correlation has also been developed as a function of silt size, silt concentration, operating hours of turbine and nozzle angle. DOI: http://dx.doi.org/10.3126/hn.v13i0.10060HYDRO NEPAL Journal of Water, Energy and EnvironmentIssue No.13, July 2013Page: Uploaded Date: 03-14-2014


2014 ◽  
Author(s):  
Shane Close ◽  
Victoria Adkins ◽  
Kandice Perry ◽  
Katheryn Eckles ◽  
Jill Brown ◽  
...  

2004 ◽  
Author(s):  
Mustapha Mouloua ◽  
Janan Smither ◽  
Robert C. Kennedy ◽  
Robert S. Kenned ◽  
Dan Compton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document