Review of neuroimaging studies related to pain modulation

2011 ◽  
Vol 2 (3) ◽  
pp. 108-120 ◽  
Author(s):  
Lone Knudsen ◽  
Gitte Laue Petersen ◽  
Kathrine Næsted Nørskov ◽  
Lene Vase ◽  
Nanna Finnerup ◽  
...  

AbstractBackground and purpose: A noxious stimulus does not necessarily cause pain. Nociceptive signals arising from a noxious stimulus are subject to modulation via endogenous inhibitory and facilitatory mechanisms as they travel from the periphery to the dorsal horn or brainstem and on to higher brain sites. Research on the neural structures underlying endogenous pain modulation has largely been restricted to animal research due to the invasiveness of such studies (e.g., spinal cord transection, brain lesioning, brain site stimulation). Neuroimaging techniques (e.g., magnetoencephalography (MEG), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)) provide non-invasive means to study neural structures in humans. The aim is to provide a narrative review of neuroimaging studies related to human pain control mechanisms.Methods: The approach taken is to summarise specific pain modulation mechanisms within the somatosensory (diffuse noxious inhibitory controls, acupuncture, movement), affective (depression, anxiety, catastrophizing, stress) and cognitive (anticipation/placebo, attention/distraction, hypnosis)domains with emphasis on the contribution of neuroimaging studies.Results and conclusions: Findings from imaging studies are complex reflecting activation or deactivation in numerous brain areas. Despite this, neuroimaging techniques have clarified supraspinal sites involved in a number of pain control mechanisms. The periaqueductal grey (PAG) is one area that has consistently been shown to be activated across the majority of pain mechanisms. Activity in the rostral ventromedial medulla known to relay descending modulation from the PAG, has also been observed both during acupuncture analgesia and anxiety-induced hyperalgesia. Other brain areas that appear to be involved in a number of mechanisms are the anterior cingulate cortex, prefrontal cortex, orbitofrontal cortex and nucleus accumbens, but their exact role is less clear.Implications: Neuroimaging studies have provided essential information about the pain modulatory pathways under normal conditions, but much is still to be determined. Understanding the mechanisms of pain control is important for understanding the mechanisms that contribute to failed pain control in chronic pain. Applying fMRI outside the brain, such as in the trigeminal nucleus caudalis of the spinotrigeminal pathway and in the dorsal horn of the spinal cord, and coupling brain activity with activity at these sites may help improve our understanding of the function of brain sites and shed light on functional connectivity in the pain pathway.© 2011 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

2008 ◽  
Vol 99 (5) ◽  
pp. 2048-2059 ◽  
Author(s):  
B. A. Graham ◽  
A. M. Brichta ◽  
R. J. Callister

Superficial dorsal horn (SDH) neurons in laminae I–II of the spinal cord play an important role in processing noxious stimuli. These neurons represent a heterogeneous population and are divided into various categories according to their action potential (AP) discharge during depolarizing current injection. We recently developed an in vivo mouse preparation to examine functional aspects of nociceptive processing and AP discharge in SDH neurons and to extend investigation of pain mechanisms to the genetic level of analysis. Not surprisingly, some in vivo data obtained at body temperature (37°C) differed from those generated at room temperature (22°C) in spinal cord slices. In the current study we examine how temperature influences SDH neuron properties by making recordings at 22 and 32°C in transverse spinal cord slices prepared from L3–L5 segments of adult mice (C57Bl/6). Patch-clamp recordings (KCH3SO4 internal) were made from visualized SDH neurons. At elevated temperature all SDH neurons had reduced input resistance and smaller, briefer APs. Resting membrane potential and AP afterhyperpolarization amplitude were temperature sensitive only in subsets of the SDH population. Notably, elevated temperature increased the prevalence of neurons that did not discharge APs during current injection. These reluctant firing neurons expressed a rapid A-type potassium current, which is enhanced at higher temperatures and thus restrains AP discharge. When compared with previously published whole cell recordings obtained in vivo (37°C) our results suggest that, on balance, in vitro data collected at elevated temperature more closely resemble data collected under in vivo conditions.


1999 ◽  
Vol 90 (1) ◽  
pp. 208-214 ◽  
Author(s):  
Joseph F. Antognini ◽  
Earl Carstens

Background The spinal cord appears to be the site at which isoflurane suppresses movement that occurs in response to a noxious stimulus. In an attempt to localize its site of suppressant action, the authors determined the effect of isoflurane on dorsal horn neuronal responses to supramaximal noxious stimulation at end-tidal concentrations that just permitted and just prevented movement. Methods Rats (n = 14) were anesthetized with isoflurane, and after lumbar laminectomy, the minimum alveolar concentration (MAC) for each rat was determined using a supramaximal mechanical stimulus. In these same rats, after extracellular microelectrode placement in the lumbar spinal cord, dorsal horn neuronal responses to the supramaximal stimulus were determined at the concentrations of isoflurane that bracketed each rat's MAC (0.1% higher and lower than MAC). The MAC of isoflurane was then re-determined. Results Dorsal horn neuronal response was 1,757+/-892 impulses/min at 0.9 MAC and 1,508+/-988 impulses/min at 1.1 MAC, a 14% decrease (P < 0.05). Cell responses varied, with some cells increasing their response at the higher concentration of isoflurane. The MAC of isoflurane was 1.38+/-0.2% before and 1.34+/-0.2% after determination of dorsal horn neuronal responses. Conclusions Isoflurane, at concentrations that bracket MAC, has a variable and minimal depressant effect on dorsal horn cell responses to noxious mechanical stimulation. These data suggest that the major action of isoflurane to suppress movement evoked by a noxious stimulus might occur primarily at a site other than the dorsal horn.


2020 ◽  
Author(s):  
Elena Makovac ◽  
Alessandra Venezia ◽  
David Hohenschurz-Schmidt ◽  
Ottavia Dipasquale ◽  
Jade B Jackson ◽  
...  

AbstractThere is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored.Here, we sought to determine brain regions mediating ANS and descending pain control associations. 30 participants underwent Conditioned Pain Modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between ‘pressure-only’ and ‘pressure+cold’ stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain, were acquired. Heart Rate Variability (HRV) was simultaneously recorded.Low frequency HRV (LF-HRV) and the CPM score were negatively correlated; individuals with higher LF-HRV during pain reported reductions in pain during CPM. PAG-frontal medial cortex (FMC) and PAG-rostral ventro-medial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-FMC functional connectivity mediated the strength of HRV-CPM association. CPM response magnitude was also negatively associated with PAG and positively associated with FMC grey matter volumes.Our multi-modal approach, using behavioral, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments.


1974 ◽  
Vol 52 (6) ◽  
pp. 1207-1211 ◽  
Author(s):  
O. Calvillo ◽  
J. L. Henry ◽  
R. S. Neuman

Morphine, applied by microiontophoresis to functionally identified dorsal horn neurones in segments L5–L7 of cats (chloralose anaesthetized, decerebrated or high spinal), produced primarily a depression of the discharge of neurones responding to noxious radiant heat applied to the skin. It depressed on-going activity (12 out of 20 neurones), glutamate-evoked excitation (8/8) and the response to the noxious stimulus (13/21). The response of two additional neurones to heat was potentiated. The effects began 10–30 s from the onset of application, reached a maximum in up to 8 min and outlasted application by up to 10 min. Morphine had relatively little effect on on-going activity and glutamate-evoked excitation of neurones responding to non-noxious stimuli (n = 18). Naloxone (intravenously and iontophoretic) reversed these depressions (4/11). It is suggested that morphine may produce analgesia, at least in part, by a direct action on a specific morphine receptor in the spinal cord.


Life Sciences ◽  
1995 ◽  
Vol 56 (23-24) ◽  
pp. 2111-2118 ◽  
Author(s):  
Andrea G. Hohmann ◽  
William J. Martin ◽  
Kang Tsou ◽  
J.Michael Walker

2019 ◽  
Vol 17 (12) ◽  
pp. 1133-1145 ◽  
Author(s):  
Rita Bardoni

Background: Despite the extensive number of studies performed in the last 50 years, aimed at describing the role of serotonin and its receptors in pain modulation at the spinal cord level, several aspects are still not entirely understood. The interpretation of these results is often complicated by the use of different pain models and animal species, together with the lack of highly selective agonists and antagonists binding to serotonin receptors. Method: In this review, a search has been conducted on studies investigating the modulatory action exerted by serotonin on specific neurons and circuits in the spinal cord dorsal horn. Particular attention has been paid to studies employing electrophysiological techniques, both in vivo and in vitro. Conclusion: The effects of serotonin on pain transmission in dorsal horn depend on several factors, including the type of receptors activated and the populations of neurons involved. Recently, studies performed by activating and/or recording from identified neurons have importantly contributed to the understanding of serotonergic modulation on dorsal horn circuits.


Sign in / Sign up

Export Citation Format

Share Document