descending pain modulation
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jin Cao ◽  
Yue Zhang ◽  
Hui Li ◽  
Zhaoxian Yan ◽  
Xian Liu ◽  
...  

Abstract Background A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. Methods Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. Results Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. Conclusions Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment.


2020 ◽  
Author(s):  
Cheng-Hao Tu ◽  
Yu-Chen Lee ◽  
Ying-Yu Chen ◽  
Chun-Ming Chen ◽  
Wen-Chi Lu ◽  
...  

Abstract BackgroundPrimary dysmenorrhea (PDM) is the most commonly encountered gynecological problem in reproductive-age women. We previously reported altered functional connectivity between periaqueductal gray matter and other pain-related brain regions in women with PDM, indicating a maladaptation in the descending pain modulation system. Clinically, acupuncture has been suggested as an effective treatment of PDM. Previous animal studies revealed that acupuncture on specific acupoint can produced analgesic effect via descending pain modulation system. In the present study, we used resting-state functional magnetic resonance imaging to investigate possible changes in descending pain modulation after acupuncture treatment in women with PDM. MethodsThirty-four right-handed adult women with PDM participated in this randomized, single-blinded, sham-controlled study. Each patient was randomly allocated to an 8-week verum or sham acupuncture intervention on the bilateral acupoint Sanyinjiao (SP6). Resting-state functional magnetic resonance imaging was conducted before, during, and after the intervention session to measure the spontaneous activity in brain. The functional connectivity maps between periaqueductal gray matter and other pain-related brain regions were generated to reveal the status of descending pain modulation systems.ResultsAfter 8 weeks, both groups reported decreased menstrual pain. However, the patterns of functional connectivity changes in descending pain modulation system were different after the verum or sham intervention. The effect of the verum acupuncture intervention may be underpinned by compensatory and/or resilience changes in descending pain modulation systems, whereas that of the sham acupuncture intervention may be underpinned by cognitive reappraisal of painConclusionsThe dissimilar pattern of the FC alterations after the verum and sham acupuncture indicating that different brain mechanisms may be responsible for the menstrual pain relief in verum or sham acupuncture intervention. These results may contribute to the discussion of whether acupuncture treatment induces therapeutic physiological alterations or its benefit is attributable to the placebo effect.


NeuroImage ◽  
2020 ◽  
Vol 221 ◽  
pp. 117186
Author(s):  
Hong Li ◽  
Xiaoyun Li ◽  
Yi Feng ◽  
Fei Gao ◽  
Yazhuo Kong ◽  
...  

2020 ◽  
Author(s):  
Elena Makovac ◽  
Alessandra Venezia ◽  
David Hohenschurz-Schmidt ◽  
Ottavia Dipasquale ◽  
Jade B Jackson ◽  
...  

AbstractThere is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored.Here, we sought to determine brain regions mediating ANS and descending pain control associations. 30 participants underwent Conditioned Pain Modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between ‘pressure-only’ and ‘pressure+cold’ stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain, were acquired. Heart Rate Variability (HRV) was simultaneously recorded.Low frequency HRV (LF-HRV) and the CPM score were negatively correlated; individuals with higher LF-HRV during pain reported reductions in pain during CPM. PAG-frontal medial cortex (FMC) and PAG-rostral ventro-medial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-FMC functional connectivity mediated the strength of HRV-CPM association. CPM response magnitude was also negatively associated with PAG and positively associated with FMC grey matter volumes.Our multi-modal approach, using behavioral, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments.


2020 ◽  
Vol 20 (4) ◽  
pp. 801-807
Author(s):  
Lars Arendt-Nielsen ◽  
Jesper Bie Larsen ◽  
Stine Rasmussen ◽  
Malene Krogh ◽  
Laura Borg ◽  
...  

AbstractBackground and aimsIn recent years, focus on assessing descending pain modulation or conditioning pain modulation (CPM) has emerged in patients with chronic pain. This requires reliable and simple to use bed-side tools to be applied in the clinic. The aim of the present pilot study was to develop and provide proof-of-concept of a simple clinically applicable bed-side tool for assessing CPM.MethodsA group of 26 healthy volunteers participated in the experiment. Pressure pain thresholds (PPT) were assessed as test stimuli from the lower leg before, during and 5 min after delivering the conditioning tonic painful pressure stimulation. The tonic stimulus was delivered for 2 min by a custom-made spring-loaded finger pressure device applying a fixed pressure (2.2 kg) to the index finger nail. The pain intensity provoked by the tonic stimulus was continuously recorded on a 0–10 cm Visual Analog Scale (VAS).ResultsThe median tonic pain stimulus intensity was 6.7 cm (interquartile range: 4.6–8.4 cm) on the 10 cm VAS. The mean PPT increased significantly (P = 0.034) by 55 ± 126 kPa from 518 ± 173 kPa before to 573 ± 228 kPa during conditioning stimulation. When analyzing the individual CPM responses (increases in PPT), a distribution of positive and negative CPM responders was observed with 69% of the individuals classified as positive CPM responders (increased PPTs = anti-nociceptive) and the rest as negative CPM responders (no or decreased PPTs = Pro-nociceptive). This particular responder distribution explains the large variation in the averaged CPM responses observed in many CPM studies. The strongest positive CPM response was an increase of 418 kPa and the strongest negative CPM response was a decrease of 140 kPa.ConclusionsThe present newly developed conditioning pain stimulator provides a simple, applicable tool for routine CPM assessment in clinical practice. Further, reporting averaged CPM effects should be replaced by categorizing volunteers/patients into anti-nociceptive and pro-nociceptive CPM groups.ImplicationsThe finger pressure device provided moderate-to-high pain intensities and was useful for inducing conditioning stimuli. Therefore, the finger pressure device could be a useful bed-side method for measuring CPM in clinical settings with limited time available. Future bed-side studies involving patient populations are warranted to determine the usefulness of the method.


2020 ◽  
Vol 9 (6) ◽  
pp. 1719 ◽  
Author(s):  
Siyi Yu ◽  
Ana Ortiz ◽  
Randy L. Gollub ◽  
Georgia Wilson ◽  
Jessica Gerber ◽  
...  

Chronic low back pain (cLBP) is a common disorder with unsatisfactory treatment options. Acupuncture has emerged as a promising method for treating cLBP. However, the mechanism underlying acupuncture remains unclear. In this study, we investigated the modulation effects of acupuncture on resting state functional connectivity (rsFC) of the periaqueductal gray (PAG) and ventral tegmental area (VTA) in patients with cLBP. Seventy-nine cLBP patients were recruited and assigned to four weeks of real or sham acupuncture. Resting state functional magnetic resonance imaging data were collected before the first and after the last treatment. Fifty patients completed the study. We found remission of pain bothersomeness in all treatment groups after four weeks, with greater pain relief after real acupuncture compared to sham acupuncture. We also found that real acupuncture can increase VTA/PAG rsFC with the amygdala, and the increased rsFC was associated with decreased pain bothersomeness scores. Baseline PAG-amygdala rsFC could predict four-week treatment response. Our results suggest that acupuncture may simultaneously modulate the rsFC of key regions in the descending pain modulation (PAG) and reward systems (VTA), and the amygdala may be a key node linking the two systems to produce antinociceptive effects. Our findings highlight the potential of acupuncture for chronic low back pain management.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhuo-Ying Tao ◽  
Pei-Xing Wang ◽  
Si-Qi Wei ◽  
Richard J. Traub ◽  
Jin-Feng Li ◽  
...  

Chronic primary pain (CPP) is a group of diseases with long-term pain and functional disorders but without structural or specific tissue pathologies. CPP is becoming a serious health problem in clinical practice due to the unknown cause of intractable pain and high cost of health care yet has not been satisfactorily addressed. During the past decades, a significant role for the descending pain modulation and alterations due to specific diseases of CPP has been emphasized. It has been widely established that central sensitization and alterations in neuroplasticity induced by the enhancement of descending pain facilitation and/or the impairment of descending pain inhibition can explain many chronic pain states including CPP. The descending serotonergic neurons in the raphe nuclei target receptors along the descending pain circuits and exert either pro- or antinociceptive effects in different pain conditions. In this review, we summarize the possible underlying descending pain regulation mechanisms in CPP and the role of serotonin, thus providing evidence for potential application of analgesic medications based on the serotonergic system in CPP patients.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peyman Sahbaie ◽  
Karen-Amanda Irvine ◽  
De-Yong Liang ◽  
Xiaoyou Shi ◽  
J. David Clark

AbstractHigh rates of acute and chronic pain are associated with traumatic brain injury (TBI), but mechanisms responsible for the association remain elusive. Recent data suggest dysregulated descending pain modulation circuitry could be involved. Based on these and other observations, we hypothesized that serotonin (5-HT)-dependent activation of spinal CXC Motif Chemokine Receptor 2 (CXCR2) may support TBI-related nociceptive sensitization in a mouse model of mild TBI (mTBI). We observed that systemic 5-HT depletion with p-chlorophenylalanine attenuated mechanical hypersensitivity seen after mTBI. Likewise, selective spinal 5-HT fiber depletion with 5,7-dihydroxytryptamine (5,7-DHT) reduced hypersensitivity after mTBI. Consistent with a role for spinal 5-HT3 serotonin receptors, intrathecal ondansetron administration after TBI dose-dependently attenuated nociceptive sensitization. Also, selective CXCR2 antagonist SCH527123 treatment attenuated mechanical hypersensitivity after mTBI. Furthermore, spinal CXCL1 and CXCL2 mRNA and protein levels were increased after mTBI as were GFAP and IBA-1 markers. Spinal 5,7-DHT application reduced both chemokine expression and glial activation. Our results suggest dual pathways for nociceptive sensitization after mTBI, direct 5-HT effect through 5-HT3 receptors and indirectly through upregulation of chemokine signaling. Designing novel clinical interventions against either the 5-HT3 mediated component or chemokine pathway may be beneficial in treating pain frequently seen in patients after mTBI.


Sign in / Sign up

Export Citation Format

Share Document