The glycemic index of a mid morning snack modifies the body temperature rhythm

2013 ◽  
Vol 14 ◽  
pp. e242-e243
Author(s):  
J. Belzunce ◽  
C. Noguera ◽  
L. Gené ◽  
R. Rial
2017 ◽  
Vol 13 (12) ◽  
pp. 20170521 ◽  
Author(s):  
Shane K. Maloney ◽  
Maija K. Marsh ◽  
Steven R. McLeod ◽  
Andrea Fuller

An increase in variation in the 24 h pattern of body temperature (heterothermy) in mammals can be induced by energy and water deficits. Since performance traits such as growth and reproduction also are impacted by energy and water balance, we investigated whether the characteristics of the body temperature rhythm provide an indication of the reproductive success of an individual. We show that the amplitude of the daily rhythm of body temperature in wild rabbits ( Oryctolagus cuniculus ) prior to breeding is inversely related to the number of pregnancies in the subsequent seven months, while the minimum daily body temperature is positively correlated to the number of pregnancies. Because reproductive output could be predicted from characteristics of the core body temperature rhythm prior to the breeding season, we propose that the pattern of the 24 h body temperature rhythm could provide an index of animal fitness in a given environment.


2019 ◽  
Vol 20 (8) ◽  
pp. 1988 ◽  
Author(s):  
Tadahiro Goda ◽  
Fumika N. Hamada

Human body temperature increases during wakefulness and decreases during sleep. The body temperature rhythm (BTR) is a robust output of the circadian clock and is fundamental for maintaining homeostasis, such as generating metabolic energy and sleep, as well as entraining peripheral clocks in mammals. However, the mechanisms that regulate BTR are largely unknown. Drosophila are ectotherms, and their body temperatures are close to ambient temperature; therefore, flies select a preferred environmental temperature to set their body temperature. We identified a novel circadian output, the temperature preference rhythm (TPR), in which the preferred temperature in flies increases during the day and decreases at night. TPR, thereby, produces a daily BTR. We found that fly TPR shares many features with mammalian BTR. We demonstrated that diuretic hormone 31 receptor (DH31R) mediates Drosophila TPR and that the closest mouse homolog of DH31R, calcitonin receptor (Calcr), is essential for mice BTR. Importantly, both TPR and BTR are regulated in a distinct manner from locomotor activity rhythms, and neither DH31R nor Calcr regulates locomotor activity rhythms. Our findings suggest that DH31R/Calcr is an ancient and specific mediator of BTR. Thus, understanding fly TPR will provide fundamental insights into the molecular and neural mechanisms that control BTR in mammals.


1985 ◽  
Vol 248 (5) ◽  
pp. R567-R572
Author(s):  
P. H. Gander ◽  
R. Lydic ◽  
H. E. Albers ◽  
M. C. Moore-Ede

In an attempt to force internal desynchronization between the rest-activity rhythm and the body temperature rhythm of the squirrel monkey (Saimiri sciureus), five animals were studied in a 14:14 light-dark cycle. In four animals a 28-h spectral component was found to predominate in the rest-activity rhythm, whereas an unentrained circadian component (tau = 25.9 +/- 0.4 h) predominated in the body temperature rhythm. Plots of the cycle-by-cycle acrophases of the two rhythms confirm that they desynchronize, due to the failure of the temperature rhythm to entrain to the light-dark cycle. These data from intact animals provide further support for the hypothesis that the squirrel monkey circadian timing system has at least two pacemakers. A rhythm for which the supra-chiasmatic nuclei (SCN) have previously been shown to be essential (rest-activity) simultaneously exhibited a different period from a rhythm (body temperature) that has been shown to persist after destruction of the SCN.


Sign in / Sign up

Export Citation Format

Share Document