Damage Profile Evolution Model Based on the Boltzmann Transport Equation for Silicon Micromachining with the Focused Helium Ion Beam

2021 ◽  
pp. 112802
Author(s):  
Qi Li ◽  
XiaoHui Lin ◽  
Chibin Zhang ◽  
Qianhuang Chen ◽  
Tianyang Shao ◽  
...  
1998 ◽  
Vol 545 ◽  
Author(s):  
G. Chen ◽  
S. G. Volz ◽  
T. Borca-Tasciuc ◽  
T. Zeng ◽  
D. Song ◽  
...  

AbstractUnderstanding phonon heat conduction mechanisms in low-dimensional structures is of critical importance for low-dimensional thermoelectricity. In this paper, we discuss heat conduction mechanisms in two-dimensional (2D) and one-dimensional (1D) structures. Models based on both the phonon wave picture and particle picture are developed for heat conduction in 2D superlattices. The phonon wave model, based on the acoustic wave equations, includes the effects of phonon interference and tunneling, while the particle model, based on the Boltzmann transport equation, treats the internal as well interface scattering of phonons. For 1D systems, both the Boltzmann transport equation and molecular dynamics simulation approaches are employed. Comparing the modeling results with experimental data suggest that the interface scattering of phonons plays a crucial role in the thermal conductivity of low-dimensional structures. We also discuss the minimum thermal conductivity of low-dimensional structures based on a generalized thermal conductivity integral, and suggest that the minimum thermal conductivities of low-dimensional systems may differ from those of their corresponding bulk materials. The discussion leads to alternative ways to reduce thermal conductivity based on the propagating phonon modes.


Volume 4 ◽  
2004 ◽  
Author(s):  
Sreekant V. J. Narumanchi ◽  
Jayathi Y. Murthy ◽  
Cristina H. Amon

The thermal problem associated with the transient electrostatic discharge phenomena in sub-micron silicon transistors is fast becoming a major reliability concern in IC packages. Currently, Fourier diffusion and some simple models based on the solution to the phonon Boltzmann transport equation (BTE) are used to predict failure (melting of silicon) in these transistors. In this study, a more comprehensive model, based on the phonon BTE and incorporating considerable details of phonon physics, is proposed and used to study the ESD problem. Transient results from the model reveal very significant discrepancies when compared to results from the other models in the literature.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Ajit K. Vallabhaneni ◽  
Liang Chen ◽  
Man P. Gupta ◽  
Satish Kumar

Several studies have validated that diffusive Fourier model is inadequate to model thermal transport at submicron length scales. Hence, Boltzmann transport equation (BTE) is being utilized to improve thermal predictions in electronic devices, where ballistic effects dominate. In this work, we investigated the steady-state thermal transport in a gallium nitride (GaN) film using the BTE. The phonon properties of GaN for BTE simulations are calculated from first principles—density functional theory (DFT). Despite parallelization, solving the BTE is quite expensive and requires significant computational resources. Here, we propose two methods to accelerate the process of solving the BTE without significant loss of accuracy in temperature prediction. The first one is to use the Fourier model away from the hot-spot in the device where ballistic effects can be neglected and then couple it with a BTE model for the region close to hot-spot. The second method is to accelerate the BTE model itself by using an adaptive model which is faster to solve as BTE for phonon modes with low Knudsen number is replaced with a Fourier like equation. Both these methods involve choosing a cutoff parameter based on the phonon mean free path (mfp). For a GaN-based device considered in the present work, the first method decreases the computational time by about 70%, whereas the adaptive method reduces it by 60% compared to the case where full BTE is solved across the entire domain. Using both the methods together reduces the overall computational time by more than 85%. The methods proposed here are general and can be used for any material. These approaches are quite valuable for multiscale thermal modeling in solving device level problems at a faster pace without a significant loss of accuracy.


2014 ◽  
Vol 185 (6) ◽  
pp. 1747-1758 ◽  
Author(s):  
Wu Li ◽  
Jesús Carrete ◽  
Nebil A. Katcho ◽  
Natalio Mingo

2008 ◽  
Vol 35 (6) ◽  
pp. 1098-1108 ◽  
Author(s):  
A.G. Buchan ◽  
C.C. Pain ◽  
M.D. Eaton ◽  
R.P. Smedley-Stevenson ◽  
A.J.H. Goddard

Sign in / Sign up

Export Citation Format

Share Document