Colorimetric sensing of mercury (II) ion based on anti-aggregation of gold nanoparticles in the presence of hexadecyl trimethyl ammonium bromide

2018 ◽  
Vol 260 ◽  
pp. 998-1003 ◽  
Author(s):  
Xiaoxiao Sun ◽  
Ruxin Liu ◽  
Qingwen Liu ◽  
Qiang Fei ◽  
Guodong Feng ◽  
...  
MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


2012 ◽  
Vol 4 (12) ◽  
pp. 3981 ◽  
Author(s):  
Haichao Su ◽  
Bing Sun ◽  
Lijian Chen ◽  
Zhenning Xu ◽  
Shiyun Ai

Optik ◽  
2021 ◽  
pp. 168188
Author(s):  
Roomia Memon ◽  
Ayaz Ali Memon ◽  
Sirajuddin ◽  
Aamna Balouch ◽  
Muhammad Raza Shah ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4166 ◽  
Author(s):  
Guangyang Liu ◽  
Meng Lu ◽  
Xiaodong Huang ◽  
Tengfei Li ◽  
Donghui Xu

Due to their unique optical properties, narrow size distributions, and good biological affinity, gold nanoparticles have been widely applied in sensing analysis, catalytic, environmental monitoring, and disease therapy. The color of a gold nanoparticle solution and its maximum characteristic absorption wavelength will change with the particle size and inter-particle spacing. These properties are often used in the detection of hazardous chemicals, such as pesticide residues, heavy metals, banned additives, and biotoxins, in food. Because the gold nanoparticles-colorimetric sensing strategy is simple, quick, and sensitive, this method has extensive applications in real-time on-site monitoring and rapid testing of food quality and safety. Herein, we review the preparation methods, functional modification, photochemical properties, and applications of gold nanoparticle sensors in rapid testing. In addition, we elaborate on the colorimetric sensing mechanisms. Finally, we discuss the advantages and disadvantages of colorimetric sensors based on gold nanoparticles, and directions for future development.


Sign in / Sign up

Export Citation Format

Share Document