Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles

2018 ◽  
Vol 276 ◽  
pp. 48-56 ◽  
Author(s):  
Birui Jin ◽  
Yexin Yang ◽  
Rongyan He ◽  
Yong Il Park ◽  
Aeju Lee ◽  
...  
2018 ◽  
Vol 49 (2) ◽  
pp. 353-359
Author(s):  
Birui Jin ◽  
Yexin Yang ◽  
Tianjian Lu ◽  
Feng Xu ◽  
Min Lin

2021 ◽  
Vol 334 ◽  
pp. 129673
Author(s):  
Wanghong He ◽  
Minli You ◽  
Zedong Li ◽  
Lei Cao ◽  
Feng Xu ◽  
...  

Author(s):  
Kai Chen ◽  
Biao Ma ◽  
Jiali Li ◽  
Erjing Chen ◽  
Ying Xu ◽  
...  

Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.


Toxicon ◽  
2018 ◽  
Vol 156 ◽  
pp. 23-27 ◽  
Author(s):  
Songcheng Yu ◽  
Leiliang He ◽  
Fei Yu ◽  
Lie Liu ◽  
Chenling Qu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5249
Author(s):  
Ruiqi Fan ◽  
Shusheng Tang ◽  
Sunlin Luo ◽  
Hu Liu ◽  
Wanjun Zhang ◽  
...  

A duplex surface enhanced Raman scattering (SERS)-based lateral flow immunosensor was established for the simultaneous detection of two common antibiotic residues including tetracycline and penicillin in milk. The newly synthesized Au@Ag nanoparticles were labeled with different Raman molecules including 5,5-dithiobis-2-nitrobenzoic acid (DTNB) or 4-mercaptobenzoic acid (MBA), followed by the conjugation of anti-tetracycline monoclonal antibody or anti-penicillin receptor, forming two kinds of SERS nanoprobes. The two nanoprobes can recognize tetracycline-BSA and ampicillin-BSA, respectively, which facilitates the simultaneous detection of the two types of antibiotics on a single test line. After optimization, detection limits of tetracycline and penicillin as low as 0.015 ng/mL and 0.010 ng/mL, respectively, were achieved. These values were far below those of most of other documented bio-analytical approaches. Moreover, the spiking test demonstrates an excellent assay accuracy with recoveries of 88.8% to 111.3%, and satisfactory assay precision with relative standard deviation below 16%. Consequently, the results demonstrate that the SERS-based lateral flow immunosensor developed in this study has the advantages of excellent assay sensitivity and remarkable multiplexing capability, thus it will have great application potential in food safety monitoring.


Sign in / Sign up

Export Citation Format

Share Document