Continuous Separation of Submicron-scale Oil Droplets in Aqueous Electrolyte by Electrophoretic Migration

2021 ◽  
pp. 130145
Author(s):  
Sangwoo Kim ◽  
Minseok Kim ◽  
Suhyeon Kim ◽  
Bumjoo Kim ◽  
Geunbae Lim
2003 ◽  
Vol 775 ◽  
Author(s):  
Ivan Stanish ◽  
Daniel A. Lowy ◽  
Alok Singh

AbstractImmobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.


2006 ◽  
Vol 18 (1) ◽  
pp. 55-72 ◽  
Author(s):  
T. Kouda ◽  
Yoshimichi Hagiwara
Keyword(s):  

Author(s):  
Jaecheol Choi ◽  
Hoang-Long Du ◽  
Manjunath Chatti ◽  
Bryan H. R. Suryanto ◽  
Alexandr Simonov ◽  
...  

We demonstrate that bismuth exhibits no measurable electrocatalytic activity for the nitrogen reduction reaction to ammonia in aqueous electrolyte solutions, contrary to several recent reports on the highly impressive rates of Bi-catalysed electrosynthesis of NH<sub>3</sub> from N<sub>2</sub>.


2020 ◽  
Vol 26 (3) ◽  
pp. 445-450
Author(s):  
Makoto Shimoyamada ◽  
Hironori Shikano ◽  
Shingo Mogami ◽  
Makoto Kanauchi ◽  
Hayato Masuda ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina R. Lenhardt ◽  
Hergen Breitzke ◽  
Gerd Buntkowsky ◽  
Erik Reimhult ◽  
Max Willinger ◽  
...  

AbstractWe report here on structure-related aggregation effects of short-range ordered aluminosilicates (SROAS) that have to be considered in the development of synthesis protocols and may be relevant for the properties of SROAS in the environment. We synthesized SROAS of variable composition by neutralizing aqueous aluminium chloride with sodium orthosilicate at ambient temperature and pressure. We determined elemental composition, visualized morphology by microscopic techniques, and resolved mineral structure by solid-state 29Si and 27Al nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Nitrogen sorption revealed substantial surface loss of Al-rich SROAS that resembled proto-imogolite formed in soils and sediments due to aggregation upon freezing. The effect was less pronounced in Si-rich SROAS, indicating a structure-dependent effect on spatial arrangement of mass at the submicron scale. Cryomilling efficiently fractured aggregates but did not change the magnitude of specific surface area. Since accessibility of surface functional groups is a prerequisite for sequestration of substances, elucidating physical and chemical processes of aggregation as a function of composition and crystallinity may improve our understanding of the reactivity of SROAS in the environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munusamy Kuppan ◽  
Daichi Yamamoto ◽  
Genta Egawa ◽  
Sivaperuman Kalainathan ◽  
Satoru Yoshimura

Abstract(Bi1−xLax)(Fe,Co)O3 multiferroic magnetic film were fabricated using pulsed DC (direct current) sputtering technique and demonstrated magnetization reversal by applied electric field. The fabricated (Bi0.41La0.59)(Fe0.75Co0.25)O3 films exhibited hysteresis curves of both ferromagnetic and ferroelectric behavior. The saturated magnetization (Ms) of the multiferroic film was about 70 emu/cm3. The squareness (S) (= remanent magnetization (Mr)/Ms) and coercivity (Hc) of perpendicular to film plane are 0.64 and 4.2 kOe which are larger compared with films in parallel to film plane of 0.5 and 2.5 kOe. The electric and magnetic domain structures of the (Bi0.41La0.59)(Fe0.75Co0.25)O3 film analyzed by electric force microscopy (EFM) and magnetic force microscopy (MFM) were clearly induced with submicron scale by applying a local electric field. This magnetization reversal indicates the future realization of high performance magnetic device with low power consumption.


Sign in / Sign up

Export Citation Format

Share Document