Gas sensing behavior of p-NiO/n-ZnO composite nanofibers depending on varying p-NiO content: Selectivity and humidity-independence for oxidizing and reducing gas molecules

2021 ◽  
Vol 349 ◽  
pp. 130813
Author(s):  
Changhyun Jin ◽  
Myung Sik Choi ◽  
Kyu Hyoung Lee ◽  
Sun-Woo Choi
2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102264-102271 ◽  
Author(s):  
Sanjeev K. Gupta ◽  
Deobrat Singh ◽  
Kaptansinh Rajput ◽  
Yogesh Sonvane

The structural stability and electronic properties of the adsorption characteristics of several toxic gas molecules (NH3, SO2 and NO2) on a germanene monolayer were investigated using density functional theory (DFT) based on an ab initio method.


2013 ◽  
Vol 543 ◽  
pp. 431-434 ◽  
Author(s):  
Kazunari Ozasa ◽  
Jee Soo Lee ◽  
Simon Song ◽  
Masahiko Hara ◽  
Mizuo Maeda

We investigated on-chip cytotoxicity gas sensing using the bacterial chemotaxis of Euglena confined in a microaquarium. The sensor chip made from PDMS had one microaquarium and two microfluidic channels passing aside of the microaquarium. The chemotactic microbial cells were confined in the microaquarium, whereas two gases (one sample and one reference) flowed in the two isolated microchannels. Gas molecules move from the microchannels into the microaquarium by permeation through porous PDMS wall, and dissolve into the water in the microaquarium, where Euglena cells are swimming. The chemotactic movements of Euglena were observed with an optical microscope and measured as traces in real time. By injecting CO2 and air into each microchannel separately, the Euglena cells in the microaquarium moved to air side, escaping from CO2. This observation showed that the concentration gradient of CO2 was produced in the water in the microaquarium. The CO2-avoiding movement of Euglena was increased largely at a CO2 concentration of 40%, and then moderately increased above 60%. Some Euglena cells stopped swimming at the air side of the microaquarium and remained there even after CO2 has been removed, which can be used as the indicator of CO2 history.


Author(s):  
S. Kumar ◽  
P. Gowthaman ◽  
J. Deenathayalan

Electro spinning technology combined with chemical precipitation method and high-temperature calcination was used to prepare SnO2-NiO composite semiconductor nanofibers with different Sn content. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology, structure and content of various elements of the sample. Using ethanol as the target gas, the gas sensing properties of SnO2-NiO nanofibers and the influence of Sn content on the gas sensing properties of composite nanofibers were explored. The research results show that SnO2-NiO composite nanofibers have a three-dimensional network structure, and the SnO2 composite can significantly enhance the gas sensitivity of NiO nanofibers. With increase of SnO2 content, the response sensitivity of composite fibers to ethanol gas increases, and the response sensitivity of composite nanofibers with the highest response to ethanol gas with a volume fraction of 100×10-6 at the optimal working temperature of 160℃ are13.4;It is 8.38 times the maximum response sensitivity of NiO nanofibers. Compared with the common ethanol gas sensor MQ-3 on the market, SnO2-NiO composite nanofibers have a lower optimal working temperature and higher response sensitivity, which has certain practical application value


2017 ◽  
Vol 248 ◽  
pp. 500-511 ◽  
Author(s):  
Jae-Hun Kim ◽  
Jae-Hyoung Lee ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Nanoscale ◽  
2022 ◽  
Author(s):  
Xiaocan Xu ◽  
Ruijia Xu ◽  
Yu-Sheng Lin

Vanadium dioxide (VO2) based metamaterial perfect absorbers (MPAs) have high potential application values in sensing gas molecules. However, such tuning mechanism via temperature manipulation lacks the compatibility to the electronic...


2021 ◽  
Vol 150 ◽  
pp. 109864 ◽  
Author(s):  
Shuai Nie ◽  
Davoud Dastan ◽  
Jing Li ◽  
Wen-Dong Zhou ◽  
Sai-Sai Wu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 44 (9) ◽  
pp. 3777-3785 ◽  
Author(s):  
Deobrat Singh ◽  
Vivekanand Shukla ◽  
Pritam Kumar Panda ◽  
Yogendra Kumar Mishra ◽  
Horst-Günter Rubahn ◽  
...  

We introduce the first-principle theoretical calculations to understand the adsorption mechanism of different gas molecules on monolayered carbon phosphide with semi-metallic electrical conductivity and graphene-like Dirac cone response.


Sign in / Sign up

Export Citation Format

Share Document