Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition

2005 ◽  
Vol 37 (2) ◽  
pp. 349-357 ◽  
Author(s):  
Annelies S. de Ridder-Duine ◽  
George A. Kowalchuk ◽  
Paulien J.A. Klein Gunnewiek ◽  
Wiecher Smant ◽  
Johannes A. van Veen ◽  
...  
2020 ◽  
Vol 56 (7) ◽  
pp. 973-989
Author(s):  
Ai-Tian Ren ◽  
Lynette K. Abbott ◽  
Yinglong Chen ◽  
You-Cai Xiong ◽  
Bede S. Mickan

Abstract Global food wastage equates to about 1.3 billion tons per year, which causes serious environmental impacts. The objective of this study was to evaluate the influences of addition of digestate from food waste in comparison to a synthetic liquid urea ammonium nitrate solution on plant growth, rhizosphere bacterial community composition and diversity, and hyphal abundance of arbuscular mycorrhizal (AM) fungi. Plant and soil samples were collected at 25, 50, and 75 days after seedling emergence. Annual ryegrass growth was significantly increased by both liquid urea ammonium nitrate and digestate, and digestate was just as effective as liquid urea ammonium nitrate. Additionally, digestate (50 kg N ha−1) significantly increased AM fungal hyphae density. Liquid urea ammonium nitrate (50 kg N ha−1) significantly decreased AM fungal hyphae density compared with liquid urea ammonium nitrate (25 kg N ha−1) at DAE 75. Digestate and liquid urea ammonium nitrate applications significantly shifted the bacterial community composition and OTU richness and changed the abundance of microbial C and N-cycling genes, while application rates had no significant effect. Structural equation modeling showed that digestate and UAN addition both directly and indirectly affected bacterial, C and N cycling genes community composition; the indirect effects were related to increased soil NO3− content and reduced pH. This study showed that the use of digestate as a soil amendment can be environmentally effective and can provide a sustainable supply of nutrients that increases soil organic C. Moreover, the use of digestate can readily be incorporated into agricultural practices with potentially less impact on soil microflora diversity and function than conventional fertilizers.


mSystems ◽  
2021 ◽  
Author(s):  
Guillaume Bay ◽  
Conard Lee ◽  
Chiliang Chen ◽  
Navreet K. Mahal ◽  
Michael J. Castellano ◽  
...  

Crops in simplified, low-diversity agroecosystems assimilate only a fraction of the inorganic nitrogen (N) fertilizer inputs. Much of this N fertilizer is lost to the environment as N oxides, which degrade water quality and contribute to climate change and loss of biodiversity.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kun Li ◽  
Xu Han ◽  
Ruiqiang Ni ◽  
Ge Shi ◽  
Sergio de-Miguel ◽  
...  

Abstract Background Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China. Because of its nitrogen-fixing ability, it can play a positive role in soil and forest restoration. After clear-cutting of planted stands, R. pseudoacacia stands become coppice plantations. The impacts of shifting from seedling to coppice stands on soil bacterial community and soil properties have not been well described. This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands. Methods Nine 20 m × 20 m plots were randomly selected in seedling and coppice stands. The bulk soil and rhizosphere soil were sampled in summer 2017. Bulk soil was sampled at 10 cm from the soil surface using a soil auger. Rhizosphere soil samples were collected using a brush. The soil samples were transported to the laboratory for chemical analysis, and bacterial community composition and diversity was obtained through DNA extraction, 16S rRNA gene amplification and high-throughput sequencing. Results The results showed that, compared to seedling plantations, soil quality decreased significantly in coppice stands, but without affecting soil exchangeable Mg2+ and K+. Total carbon (C) and nitrogen (N) were lower in the rhizosphere than in bulk soil, whereas nutrient availability showed an opposite trend. The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterial α-diversity. Principal component analysis (PCA) showed that bacterial community composition was similar in both bulk and rhizosphere soils in second-generation coppice plantations. Specially, the conversion from seedling to coppice stands increased the relative abundance of Proteobacteria and Rhizobium, but reduced that of Actinobacteria, which may result in a decline of soil nutrient availability. Mantel tests revealed that C, N, soil organic matter (SOM), nitrate nitrogen (NO3−-N) and available phosphorus positively correlated with bacterial community composition, while a variation partition analysis (VPA) showed that NO3−-N explained a relatively greater proportion of bacterial distribution (15.12%), compared with C and SOM. Surprisingly, N showed no relationship with bacterial community composition, which may be related to nitrogen transportation. Conclusions The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils. Such imbalance in microbial structure can accelerate the decline of R. pseudoacacia. This may affect the role of R. pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas.


Sign in / Sign up

Export Citation Format

Share Document