Impact of glucose on microbial community of a soil containing pyrite cinders: Role of bacteria in arsenic mobilization under submerged condition

2010 ◽  
Vol 42 (5) ◽  
pp. 699-707 ◽  
Author(s):  
Anna Corsini ◽  
Lucia Cavalca ◽  
Laura Crippa ◽  
Patrizia Zaccheo ◽  
Vincenza Andreoni
Author(s):  
Md. Shajedul Islam ◽  
M. G. Mostafa

Abstract Arsenic contamination of alluvial aquifers of the Bengal delta plain causes a serious threat to human health for over 75 million people. The study aimed to explore the impacts of chemical fertilizer on arsenic mobilization in the sedimentary deposition of the alluvial Bengal delta plain. It selected ten comparatively higher affected Districts and the least affected two Divisions as a referral study site. The countrywide pooled concentration of arsenic in groundwater was 109.75 μg/L (52.59, 166.91) at a 95% confidence interval, which was double the national guideline value (50 μg/L). The analysis results showed a strong positive correlation (r ≥ 0.5) of arsenic with NO3, NH4, PO4, SO4, Ca, and K, where a portion of those species originated from fertilizer leaching into groundwater. The results showed that PO4 played a significant influence in arsenic mobilization, but the role of NO3, SO4, and NH4 was not clear at certain lithological conditions. It also showed that clay, peat, silt-clay, and rich microbial community with sufficiently organic carbon loaded soils could lead to an increase in arsenic mobilization. Finally, the study observed that the overall lithological conditions are the main reason for the high arsenic load in the study area.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Jizhong Zhou ◽  
Wenzong Liu ◽  
Ye Deng ◽  
Yi-Huei Jiang ◽  
Kai Xue ◽  
...  

ABSTRACTThe processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management.IMPORTANCEMicroorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of stochastic processes in generating microbial biodiversity is rarely appreciated. Moreover, while microorganisms mediate many ecosystem processes, the relationship between microbial diversity and ecosystem functioning remains largely elusive. Using a well-controlled laboratory system, this study provides empirical support for the dominant role of stochastic assembly in creating variations of microbial diversity and the first explicit evidence for the critical role of community assembly in influencing ecosystem functioning. The results presented in this study represent important contributions to the understanding of the mechanisms, especially stochastic processes, involved in shaping microbial biodiversity.


2020 ◽  
Author(s):  
Qing-Lin Chen ◽  
Hang-Wei Hu ◽  
Zhen-Zhen Yan ◽  
Chao-Yu Li ◽  
Bao-Anh Thi Nguyen ◽  
...  

Abstract Background: Termites are ubiquitous insects in tropical and subtropical habitats, where they construct massive mounds from soil, their saliva and excreta. Termite mounds harbor an enormous amount of microbial inhabitants, which regulate multiple ecosystem functions such as mitigating methane emissions and increasing ecosystem resistance to climate change. However, we lack a mechanistic understanding about the role of termite mounds in modulating the microbial community assembly processes, which are essential to unravel the biological interactions of soil fauna and microorganisms, the major components of soil food webs. We conducted a large-scale survey across a >1500 km transect in northern Australia to investigate biogeographical patterns of bacterial and fungal community in 134 termite mounds and the relative importance of deterministic versus stochastic processes in microbial community assembly. Results: Microbial alpha (number of phylotypes) and beta (changes in bacterial and fungal community composition) significantly differed between termite mounds and surrounding soils. Microbial communities in termite mounds exhibited a significant distance-decay pattern, and fungal communities had a stronger distance-decay relationship (slope = -1.91) than bacteria (slope = -0.21). Based on the neutral community model (fitness < 0.7) and normalized stochasticity ratio index (NST) with a value below the 50% boundary point, deterministic selection, rather than stochastic forces, predominated the microbial community assembly in termite mounds. Deterministic processes exhibited significantly weaker impacts on bacteria (NST = 45.23%) than on fungi (NST = 33.72%), probably due to the wider habitat niche breadth and higher potential migration rate of bacteria. The abundance of antibiotic resistance genes (ARGs) was negatively correlated with bacterial/fungal biomass ratios, indicating that ARG content might be an important biotic factor that drove the biogeographic pattern of microbial communities in termite mounds. Conclusions: Deterministic processes play a more important role than stochastic processes in shaping the microbial community assembly in termite mounds, an unique habitat ubiquitously distributed in tropical and subtropical ecosystems. An improved understanding of the biogeographic patterns of microorganisms in termite mounds is crucial to decipher the role of soil faunal activities in shaping microbial community assembly, with implications for their mediated ecosystems functions and services.


2010 ◽  
Vol 10 (2) ◽  
pp. 145-156 ◽  
Author(s):  
S. A. Wakelin ◽  
D. W. Page ◽  
P. Pavelic ◽  
A. L. Gregg ◽  
P. J. Dillon

Factors affecting microbial diversity (richness) and community structure in biofilter columns were investigated. At a pilot filtration plant, granular activated carbon (GAC), anthracite and sand-based filters were used to treat stormwater from an urban catchment. After 12 weeks operation, sand media filters clogged (hydraulic conductivity declining by 90%) and all filters were destructively sampled. All biofilters had similar levels of polysaccharide in the surface layer, however only the sand columns clogged. This clogging may have been due to a combination of polysaccharide and small particle size, the development of a sand-specific microbial community, or other biogeochemical interactions. DNA fingerprinting was used to show that bacterial, archaeal and eukaryotic communities were present in all filter types and at all sampling depths (to 45 cm). The bacterial community was far richer (Margalefs index, d, 1.5–2) than the other groups. This was consistent across filter types and sampling depths. The structure of the bacteria and archaea communities in sand filters differed to those in GAC and anthracite filters (P&lt;0.05). In contrast, eukaryotic communities were similar in surface biofilm layers, irrespective of filter type. As such, physicochemical properties of filters differentially influence the microbial community. Furthermore, we have established that archaea are distributed throughout biofilters; the role of these microorganisms in water treatment and filter function, particularly clogging, requires attention.


2018 ◽  
Vol 264 ◽  
pp. 290-297 ◽  
Author(s):  
Oscar Franchi ◽  
Patricia Bovio ◽  
Eduardo Ortega-Martínez ◽  
Francisca Rosenkranz ◽  
Rolando Chamy

Sign in / Sign up

Export Citation Format

Share Document