scholarly journals Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter

2018 ◽  
Vol 116 ◽  
pp. 99-109 ◽  
Author(s):  
Quan Yuan ◽  
Marcela Hernández ◽  
Marc G. Dumont ◽  
Junpeng Rui ◽  
Ana Fernández Scavino ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph B. Yavitt ◽  
Gwendolyn T. Pipes ◽  
Emily C. Olmos ◽  
Jiangbo Zhang ◽  
James P. Shapleigh

Converting forest and wetland landscapes to agriculture has shown to result in a loss of organic matter, structure, and microbial diversity in the converted soil but recovery of post-agricultural soils remains poorly understood. Here we coupled landscape-scale surveys of soil 1) carbon and nitrogen levels, 2) aggregation, and 3) bacterial metagenomes to investigate soil recovery after 30 years in sites with soils ranging from well drained to poorly drained. Sites with no evidence of past agriculture (Reference) served as recovery endpoints. A secondary aim evaluated the role of nitrogen-fixing symbiosis, here associated with alder (Alnus incana) trees, in soil restoration. Soil carbon levels in restored sites (3.5%) were comparable to levels in a present-day farm (3.4%) but much lower than in Reference sites (>7.3%). The same trend occurred with soil nitrogen levels. Sites with alder trees had more acidic soil pH values. Alder trees promoted soil structure with macroaggregates being the largest fraction of bulk soil (75%). Natural abundance of stable nitrogen isotopes suggested extensive decay of organic matter within aggregates. Comparison of total reads from the soil metagenomes indicated the bacterial community in restored sites were more comparable to the present-day farm than Reference sites, except for a well-drained soil with alder. Dissimilarity among sites in terms of gene abundances in soil bacterial community occurred in carbon metabolism, membrane transport, and genetic repair pathways. Soil recovery in post-agricultural landscapes is slow when agriculture caused a large loss of soil organic matter, as is the case in our study, and when the soil bacterial community structure changed markedly, as it did in our study. However, fairly rapid recovery of soil structure, as we noted in our study, is promising, and now we need a better understanding of plant species that improve soil structure for restoration of both well-drained and poorly drained soils.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuren Li ◽  
Jincai Han ◽  
Haodong Bai ◽  
Di Peng ◽  
Lifeng Wang ◽  
...  

AbstractApplication of a novel bioorganic fertilizer (BIO) has been effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escherichia- Shigella, Geobacter and Haliangium were significantly different between BIO-treatment and untreated control and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacteria in rice paddies and should be encouraged for use as a sustainable weed management strategy.


2021 ◽  
Vol 167 ◽  
pp. 104096
Author(s):  
Lea H. Hiltunen ◽  
Oili Tarvainen ◽  
Jani Kelloniemi ◽  
Jaakko Tanskanen ◽  
Jouni Karhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document