scholarly journals Effects of novel bioorganic fertilizer application on soil enzymes and bacterial community in multi-site rice paddies in China

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuren Li ◽  
Jincai Han ◽  
Haodong Bai ◽  
Di Peng ◽  
Lifeng Wang ◽  
...  

AbstractApplication of a novel bioorganic fertilizer (BIO) has been effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escherichia- Shigella, Geobacter and Haliangium were significantly different between BIO-treatment and untreated control and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacteria in rice paddies and should be encouraged for use as a sustainable weed management strategy.

2021 ◽  
Author(s):  
Zuren Li ◽  
Jingcai Han ◽  
Haodong Bai ◽  
Di Peng ◽  
Lifeng Wang ◽  
...  

Abstract Application of the novel bioorganic fertilizer (BIO) is effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escgerichia- Shigella, Geobacter and Haliangium were significantly different and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters between BIO-treatment and untreated control. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacterial in rice paddies and should be encouraged for use as a sustainable weed management strategy.


2021 ◽  
Author(s):  
Zuren Li ◽  
Huidang Jian ◽  
Ducai Liu ◽  
Xueduan Liu ◽  
Lianyang Bai

Abstract Background: The growth of weed is common problem in rice cropping, leading to the application of herbicidal substances to suppress weed growth. Weed biocontrol through novel bioorganic fertilizer (BIO) has been established in rice cultivation, however, its main herbicidal components and influence on soil bacterial community are unknown.Results: We identified three herbicidal components, hexadecanoic, isovaleric, and 2-methylbutyric acids, in BIO extract. We conducted 16S rRNA sequencing to identify changes in soil bacterial community in response to BIO treatments and performed a RDA analysis with soil chemical properties and weed-control effect. The OTU, Chao1 and Shannon indices did not differ substantially among the BIO treatments, and the bacterial diversity was not significantly affected by BIO. As result from PCA analysis, we discovered that soil bacterial community was not significantly influenced by BIO. We identified six dominant phyla (Proteobacteria, Acidobacteria, Chloroflexi, Nitrospirae, and Verrucomicrobia) in BIO-treated paddies. The five most abundant genera were Anaeromyxobacter, Candidatus Nitrosotalea, Clostridum sensustricto1, Haliangium and Candidatus Nitrotoga. From the RDA analysis, the highest correlations were obtained for soil pH, total K, and Pseudomonas. The weed-control effect mostly correlated with the abundance of Candidatus Koribacter, Clostridium sebsustricto 9, and Nonomuraea. Rice yield had a distinct relationship with Nonomuraea, Nitrospira, and Candidatus Koribacter.Conclusions: With the changes in soil pH and total K, BIO could impact bacterial communities and weed control, and in turn affect rice yield. This foundation can be helpful that application BIO is a “not harmful” and feasibility weed biocontrol strategy.


2021 ◽  
Author(s):  
Yun Wang ◽  
Peng Xie ◽  
Jiyun She ◽  
Aihua Deng ◽  
Shaogang Fan

Abstract Purpose: Little is known regarding the combined impact of plant and soil traits on the soil bacterial community. Herein, we assessed physical and chemical properties along with bacterial community structure in soils sampled at different depths (0–20 cm, 20–40 cm, and 40–60 cm) and slope positions (peak, hillside, and bottom), in Camellia oleifera monoculture and mixed Gardenia jasminoides–Camellia oleifera stands. Methods: Soil physicochemical characteristics were determined using standard methods. The composition of soil bacterial communities was evaluated using high-throughput sequencing of the 16S rRNA gene. Results: Soil organic carbon, humus, and total organic contents were higher in G. jasminoides + C. oleifera low-yielding forest than in other stands, however, the NH4+-N levels were significantly lower than that in monoculture. The slope position did not greatly influence soil physical and chemical properties. The dominant bacteria were Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria. The alpha and beta diversity and abundance of soil bacterial community were higher in intercropping systems than in monoculture systems. Potassium and nitrogen levels and pH significantly affected the soil microbial community composition. Correlation analysis revealed that alkaline hydrolysable nitrogen and pH were significantly correlated with the input of plant-associated organic matter and dynamic changes of keystone taxa.Conclusion: G. jasminoides improved the physicochemical characteristics of C. oleifera low-yielding soil and greatly affected the soil bacterial community, further improving the soil microecological environment. Therefore, this specific intercropping system is an effective strategy for improving soil health.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11985
Author(s):  
Ademir Durrer ◽  
Thiago Gumiere ◽  
Maurício Rumenos Guidetti Zagatto ◽  
Henrique Petry Feiler ◽  
Antonio Marcos Miranda Silva ◽  
...  

Background The importance of organic farming has increased through the years to promote food security allied with minimal harm to the ecosystem. Besides the environmental benefits, a recurring problem associated with organic management is the unsatisfactory yield. A possible solution may rely on the soil microbiome, which presents a crucial role in the soil system. Here, we aimed to evaluate the soil bacterial community structure and composition under organic and conventional farming, considering the tropical climate and tropical soil. Methodology Our organic management treatments were composed by composted poultry manure and green manure with Bokashi. Both organic treatments were based on low nitrogen inputs. We evaluated the soil bacterial community composition by high-throughput sequencing of 16S rRNA genes, soil fertility, and soil enzyme activity in two organic farming systems, one conventional and the last transitional from conventional to organic. Results We observed that both organic systems evaluated in this study, have higher yield than the conventional treatment, even in a year with drought conditions. These yield results are highly correlated with changes in soil chemical properties and enzymatic activity. The attributes pH, Ca, P, alkaline phosphatase, and β- glucosidase activity are positively correlated with organic systems, while K and Al are correlated with conventional treatment. Also, our results show in the organic systems the changes in the soil bacteria community, being phyla Acidobacteria, Firmicutes, Nitrospirae, and Rokubacteria the most abundant. These phyla were correlated with soil biochemical changes in the organic systems, helping to increase crop yields. Conclusion Different organic management systems, (the so-called natural and organic management systems, which use distinct organic sources), shift the soil bacterial community composition, implying changes in their functionalities. Also, our results contributed to the identification of target bacterial groups and changes in soil chemical properties and enzymatic activity in a trophic organic farming system, which may contribute to higher crop yields.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Neelawan Pongsilp ◽  
Pongrawee Nimnoi

Abstract In our former research, we succeeded in using agar, alginate, and perlite as immobilization materials to maintain long-term survival of the inoculant, Ensifer fredii LP2/20, in a controlled glasshouse. Therefore the information on the establishment and activity of the inoculant to promote plant growth under field conditions, the effects of the inoculant on the soil microbial communities and specific microbial taxa, and the association between the inoculant and soil elements merit further studies. Here, we found that agar was the most suitable material that supported the establishment of the inoculant under field conditions. RNA-based analysis showed that E. fredii LP2/20 immobilized in agar was still metabolically active at day 50 after being introduced into soil. Inoculation of E. fredii LP2/20 immobilized in agar conferred the highest plant dry weight (up to 89.94%) and all plant elements including total N (9.55%), P (17.94%), K (68.42%), Ca (39.77%), Mg (30.76%), Fe (29.85%), and Zn (22.44%). Inoculation of E. fredii LP2/20 immobilized in agar increased soil chemicals including soil organic matter (99.02%), total N (272.48%), P (31.75%), K (52.74%), Fe (51.06%), and Zn (63.10%). High-throughput next-generation sequencing of bacterial 16S rRNA amplicons showed that the Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were dominant phyla in Chinese kale field soil. Inoculation of E. fredii LP2/20 significantly affected the soil bacterial community structure by decreasing total bacterial richness and diversity. The numbers of alpha- and gamma-Proteobacteria were significantly increased while the number of delta-Proteobacteria was significantly decreased due to E. fredii LP2/20 establishment. Soil total P, K, and Ca and soil pH were the important factors that shaped the soil bacterial community composition.


2021 ◽  
Vol 9 (5) ◽  
pp. 961
Author(s):  
Jinu Eo ◽  
Myung-Hyun Kim ◽  
Min-Kyeong Kim ◽  
Soon-Kun Choi

Reducing management intensity according to the topography of pastures can change the dominant plant species from sown forages to weeds. It is unclear how changes in species dominance in plant community drive spatial variation in soil bacterial community characteristics and functions in association with edaphic condition. Analysing separately the effects of both plant communities and soil chemical properties on bacterial community is crucial for understanding the biogeographic process at a small scale. In this paper, we investigated soil bacterial responses in five plant communities (two forage and three weed), where >65% of the coverage was by one or two species. The structure and composition of the bacterial communities in the different microbiome were analysed using sequencing and their characteristics were assessed using the Functional Annotation of Prokaryotic Taxa (FAPROTAX) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Firmicutes and Planctomycetes responded only to one specific plant community, and each plant community harboured unique operational taxonomic units (OTUs) at the species level. There were a large percentage of uniquely absent OTUs for specific plant communities, suggesting that a negative effect is critical in the relationship between plants and bacteria. Bacterial diversity indices were influenced more by soil chemical properties than by plant communities. Some putative functions related to C and N recycling including nitrogen fixation were correlated with pH, electrical conductivity (EC) and nutrient levels, and this also implied that some biological functions, such as ureolysis and carbon metabolism, may decline when fertilisation intensity is reduced. Taken together, these results suggest that a shift of dominant species in plant community exerts individual effects on the bacterial community composition, which is different from the effect of soil chemical properties.


2021 ◽  
Vol 167 ◽  
pp. 104096
Author(s):  
Lea H. Hiltunen ◽  
Oili Tarvainen ◽  
Jani Kelloniemi ◽  
Jaakko Tanskanen ◽  
Jouni Karhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document