Time-dependent seismic fragility analysis of corroded pile-supported wharves with updating limit states

2021 ◽  
Vol 142 ◽  
pp. 106551
Author(s):  
Hamid Mirzaeefard ◽  
Mohammad Amin Hariri-Ardebili ◽  
Masoud Mirtaheri
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sangmok Lee ◽  
Byungmin Kim ◽  
Young-Joo Lee

Liquid-containing storage tanks are important structures in industrial complexes. Because earthquake damages to liquid storage tanks can cause structural collapse, fires, and hazardous material leaks, there have been continuous efforts to mitigate earthquake damages using seismic fragility analysis. In this regard, this study focuses on the seismic responses and fragility of liquid storage tanks. First, the characteristics of earthquake ground motions are a critical factor influencing the seismic fragility of structures; thus, this study employs real earthquake records observed in the target area, southeastern Korea, with the earthquake characteristics estimated based on the ratio of peak ground acceleration to peak ground velocity. When a liquid storage tank oscillates during an earthquake, additional forces can impact the tank wall owing to hydrodynamic pressures. Therefore, this study presents a sophisticated finite element (FE) model that reflects the hydrodynamic effect of an oscillating liquid. Another advantage of such an FE model is that detailed structural responses of the entire wall shells can be estimated; this is not possible in simplified lumped mass or surrogate models. Lastly, probabilistic seismic demand models are derived for three critical limit states: elastic buckling, elephant’s foot buckling, and steel yielding. Using the real earthquake ground motion records, constructed FE model, and limit states, a seismic fragility analysis is performed for a typical anchored steel liquid storage tank in Korea. In addition, for comparison purposes, a ring-stiffened model is investigated to derive a seismic fragility curve. The results of the seismic fragility assessment show that elastic buckling is the most vulnerable damage state. In contrast, elephant’s foot buckling and steel yielding indicate relatively severe damage levels. Furthermore, it is observed that ring stiffeners decrease the elastic buckling damage, although there is no practical effect on elephant’s foot buckling and steel yielding in all ground motion intensities.


2019 ◽  
Vol 13 (02) ◽  
pp. 1950010 ◽  
Author(s):  
Ji-Su Kim ◽  
Jung Pyo Jung ◽  
Ji-Hoon Moon ◽  
Tae-Hyung Lee ◽  
Jong Hak Kim ◽  
...  

The objective of this study is to establish a system for selecting the optimum friction material to meet the seismic performance requirements of a liquefied natural gas tank with a friction pendulum system (FPS). A methodology for determining the optimum frictional material using seismic fragility analysis is suggested, and it is applied to materials with various frictional coefficients for FPS. Seismic fragility curves with two different limit states are developed to determine the optimum friction material, and a methodology for combining fragility curves is proposed. The analysis shows that a lower friction coefficient for FPSs is more appropriate for preventing failure in FPSs and the superstructure investigated in this study.


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Sign in / Sign up

Export Citation Format

Share Document