Impact of bedding plane direction and type of plastic microparticles on stiffness of inherently anisotropic gap-graded soils: Index, wave propagation and micromechanical-based interpretations

2021 ◽  
Vol 150 ◽  
pp. 106924
Author(s):  
Mostafa Zamanian ◽  
Meghdad Payan ◽  
Soraya Memarian ◽  
Kostas Senetakis
Author(s):  
Soroush Sepehri ◽  
Mahmoud Mosavi Mashhadi ◽  
Mir Masoud Seyyed Fakhrabadi

The effects of shear deformation on analysis of the wave propagation in periodic lattices are often assumed negligible. However, this assumption is not always true, especially for the lattices made of beams with smaller aspect ratios. Therefore, in the present paper, the effect of shear deformation on wave propagation in periodic lattices with different topologies is studied and their wave attenuation and directionality performances are compared. Current experimental limitations make the researchers focus more on the wave propagation in the direction perpendicular to the plane of periodicity in micro/nanoscale lattice materials while for their macro/mesoscale counterparts, in-plane modes can also be analyzed as well as the out-of-plane ones. Four well-known topologies of hexagonal, triangular, square, and Kagomé are considered in the current paper and their wave propagation is investigated both in the plane of periodicity and in the out-of-plane direction. The finite element method is used to formulate the governing equations and Bloch’s theorem is used to solve the dispersion relations. To investigate the effect of shear deformation, both the Timoshenko and Euler-Bernoulli beam theories are implemented. The results indicate that including shear deformation in wave propagation has a softening effect on the band diagrams of wave propagation and moves the dispersion branches to lower frequencies. It can also reveal some bandgaps that are not predicted without considering the shear deformation.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


2012 ◽  
Author(s):  
Bruno Moreira ◽  
Mauricio Kischinhevsky ◽  
Marcelo Zamith ◽  
Esteban Clua ◽  
Diego Brandao

Sign in / Sign up

Export Citation Format

Share Document