Variable band-gap semiconductors as the basis of new solar cells

Solar Energy ◽  
2009 ◽  
Vol 83 (9) ◽  
pp. 1466-1471 ◽  
Author(s):  
Arturo Morales-Acevedo
2021 ◽  
Vol 868 ◽  
pp. 159253
Author(s):  
Andrea Ruiz-Perona ◽  
Galina Gurieva ◽  
Michael Sun ◽  
Tim Kodalle ◽  
Yudania Sánchez ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3918
Author(s):  
Ratshilumela S. Dima ◽  
Lutendo Phuthu ◽  
Nnditshedzeni E. Maluta ◽  
Joseph K. Kirui ◽  
Rapela R. Maphanga

Titanium dioxide (TiO2) polymorphs have recently gained a lot of attention in dye-sensitized solar cells (DSSCs). The brookite polymorph, among other TiO2 polymorphs, is now becoming the focus of research in DSSC applications, despite the difficulties in obtaining it as a pure phase experimentally. The current theoretical study used different nonmetals (C, S and N) and (C-S, C-N and S-N) as dopants and co-dopants, respectively, to investigate the effects of mono-doping and co-doping on the electronic, structural, and optical structure properties of (210) TiO2 brookite surfaces, which is the most exposed surface of brookite. The results show that due to the narrowing of the band gap and the presence of impurity levels in the band gap, all mono-doped and co-doped TiO2 brookite (210) surfaces exhibit some redshift. In particular, the C-doped, and C-N co-doped TiO2 brookite (210) surfaces exhibit better absorption in the visible region of the electromagnetic spectrum in comparison to the pure, S-doped, N-doped, C-S co-doped and N-S co-doped TiO2 brookite (210) surfaces.


Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6477-6503 ◽  
Author(s):  
Manoj Kumar ◽  
Sanju Rani ◽  
Yogesh Singh ◽  
Kuldeep Singh Gour ◽  
Vidya Nand Singh

SnSe/SnSe2 has diverse applications like solar cells, photodetectors, memory devices, Li and Na-ion batteries, gas sensors, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap.


RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17595-17602
Author(s):  
Shengquan Fu ◽  
Yueyue Xiao ◽  
Xinxin Yu ◽  
Tianxing Xiang ◽  
Fei Long ◽  
...  

High-efficiency perovskite solar cells with good grain morphology and adjustable band gap were prepared by ultrasonic spray.


2015 ◽  
Vol 107 (10) ◽  
pp. 103902 ◽  
Author(s):  
Darren C. J. Neo ◽  
Samuel D. Stranks ◽  
Giles E. Eperon ◽  
Henry J. Snaith ◽  
Hazel E. Assender ◽  
...  

2001 ◽  
Vol 668 ◽  
Author(s):  
J. Fritsche ◽  
S. Gunst ◽  
A. Thiβen ◽  
R. Gegenwart ◽  
A. Klein ◽  
...  

ABSTRACTTin dioxide (SnO2) coated glass is the commonly used substrate for thin film solar cells based on CdTe absorbers. We have investigated the properties of the CdS/SnO2 interface by X-ray and ultraviolet photoelectron spectroscopy. SnO2 coated glass substrates as used for solar cell preparation were cleaned by different procedures such as derinsing, sputtering, heating and annealing in oxygen atmosphere. Different surface properties with a strongly dependent number of defects in the SnO2 band gap are identified. CdS films were deposited stepwise by thermal evaporation to determine the electronic interface properties for different surface preparation conditions. Comparative barrier heights at the CdSSnO2 contact are found for most surface pretreatments. The Fermi level position in these cases is situated in the SnO2 band gap. A different interface behaviour is determined for sputter cleaned SnO2 surfaces, which is attributed to the formation of oxygen vacancies during sputtering and subsequent formation of an interfacial SnOxSy compound.


Sign in / Sign up

Export Citation Format

Share Document