Simultaneous achievement of high visible transmission and near-infrared heat shielding in flexible liquid crystal-based smart windows via electrode design

Solar Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 857-864 ◽  
Author(s):  
Jinhua Huang ◽  
Jia Li ◽  
Junjun Xu ◽  
Zhaozhao Wang ◽  
Wei Sheng ◽  
...  
2018 ◽  
Vol 10 (26) ◽  
pp. 22731-22738 ◽  
Author(s):  
Chiaki Nakamura ◽  
Kengo Manabe ◽  
Mizuki Tenjimbayashi ◽  
Yuki Tokura ◽  
Kyu-Hong Kyung ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 897-903 ◽  
Author(s):  
Oleksandr Buchnev ◽  
Alexandr Belosludtsev ◽  
Victor Reshetnyak ◽  
Dean R. Evans ◽  
Vassili A. Fedotov

AbstractWe demonstrate experimentally that Tamm plasmons in the near infrared can be supported by a dielectric mirror interfaced with a metasurface, a discontinuous thin metal film periodically patterned on the sub-wavelength scale. More crucially, not only do Tamm plasmons survive the nanopatterning of the metal film but they also become sensitive to external perturbations as a result. In particular, by depositing a nematic liquid crystal on the outer side of the metasurface, we were able to red shift the spectral position of Tamm plasmon by 35 nm, while electrical switching of the liquid crystal enabled us to tune the wavelength of this notoriously inert excitation within a 10-nm range.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Yuan Deng ◽  
Shi-Qin Li ◽  
Qian Yang ◽  
Zhi-Wang Luo ◽  
He-Lou Xie

Smart windows can dynamically and adaptively adjust the light transmittance in non-energy or low-energy ways to maintain a comfortable ambient temperature, which are conducive to efficient use of energy. This work proposes a liquid crystal (LC) smart window with highly efficient near-infrared (NIR) response using carbon nanotubes grafted by biphenyl LC polymer brush (CNT-PDB) as the orientation layer. The resultant CNT-PDB polymer brush can provide the vertical orientation of LC molecules to maintain the initial transparency. At the same time, the smart window shows a rapid response to NIR light, which can quickly adjust the light transmittance to prevent sunlight from entering the room. Different from common doping systems, this method avoids the problem of poor compatibility between the LC host and photothermal conversion materials, which is beneficial for improving the durability of the device.


2021 ◽  
Vol 13 (4) ◽  
pp. 5028-5033
Author(s):  
Seung-Won Oh ◽  
Seung-Min Nam ◽  
Sang-Hyeok Kim ◽  
Tae-Hoon Yoon ◽  
Wook Sung Kim

2021 ◽  
pp. 118014
Author(s):  
Hyun-Jin Yoon ◽  
Doyeon Lee ◽  
Jiseon Yang ◽  
Jang-Kun Song
Keyword(s):  

2021 ◽  
Author(s):  
Javad Shabanpour ◽  
Morteza Sedaghat ◽  
Vahid Nayyeri ◽  
Homayoon Oraizi ◽  
Omar Ramahi

2021 ◽  
Author(s):  
Zemin He ◽  
Ping Yu ◽  
Huimin Zhang ◽  
Yuzhen Zhao ◽  
Yanfang Zhu ◽  
...  

Abstract In this work, two silicon nanostructures were doped into polymer/nematic liquid crystal composites to regulate the electric-optical performance. Commercial SiO2 nanoparticles and synthesized thiol polyhedral oligomeric silsesquioxane (POSS-SH) were chosen as the dopants to afford the silicon nanostructures. SiO2 nanoparticles were physically dispersed in the composites and the nanostructure from POSS-SH was implanted into the polymer matrix of the composites via photoinduced thiol-ene crosslinking. SEM results indicated that the implantation of POSS microstructure into the polymer matrix was conducive to obtaining the uniform porous polymer microstructures in the composites while the introduction of SiO2 nanoparticles led to the loose and heterogeneous polymer morphologies. The electric-optical performance test results also demonstrated that the electric-optical performance regulation effect of POSS microstructure was more obvious than that of SiO2 nanoparticles. The driving voltage was reduced by almost 80% if the concentration of POSS-SH in the composite was nearly 8 wt% and the sample could be completely driven by the electric field whose voltage was lower than the safe voltage for continuous contact (24 V). This work could provide a creative approach for the regulation of electric-optical performance for polymer/nematic liquid crystal composites and the fabrication of low voltage-driven PDLC films for smart windows.


2020 ◽  
Vol 47 (1) ◽  
pp. 0100002
Author(s):  
刘晓凤 Liu Xiaofeng ◽  
彭丽萍 Peng Liping ◽  
赵元安 Zhao Yuanan ◽  
王玺 Wang Xi ◽  
李大伟 Li Dawei ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 539 ◽  
Author(s):  
Dimitre Dimitrov ◽  
Che-Liang Tsai ◽  
Stefan Petrov ◽  
Vera Marinova ◽  
Dimitrina Petrova ◽  
...  

The integration of high uniformity, conformal and compact transparent conductive layers into next generation indium tin oxide (ITO)-free optoelectronics, including wearable and bendable structures, is a huge challenge. In this study, we demonstrate the transparent and conductive functionality of aluminum-doped zinc oxide (AZO) thin films deposited on glass as well as on polyethylene terephthalate (PET) flexible substrates by using an atomic layer deposition (ALD) technique. AZO thin films possess high optical transmittance at visible and near-infrared spectral range and electrical properties competitive to commercial ITO layers. AZO layers deposited on flexible PET substrates demonstrate stable sheet resistance over 1000 bending cycles. Based on the performed optical and electrical characterizations, several applications of ALD AZO as transparent conductive layers are shown—AZO/glass-supported liquid crystal (LC) display and AZO/PET-based flexible polymer-dispersed liquid crystal (PDLC) devices.


Sign in / Sign up

Export Citation Format

Share Document