Heat-Shielding and Self-Cleaning Smart Windows: Near-Infrared Reflective Photonic Crystals with Self-Healing Omniphobicity via Layer-by-Layer Self-Assembly

2018 ◽  
Vol 10 (26) ◽  
pp. 22731-22738 ◽  
Author(s):  
Chiaki Nakamura ◽  
Kengo Manabe ◽  
Mizuki Tenjimbayashi ◽  
Yuki Tokura ◽  
Kyu-Hong Kyung ◽  
...  
2019 ◽  
Vol 28 (7) ◽  
pp. 9-16
Author(s):  
Shich-Chuan Wu ◽  
Yu-Lin Yang ◽  
Wen-Hsien Huang ◽  
Yang-Tung Huang

Author(s):  
Francois Barthelat

Billions of years of evolution have produced extremely efficient natural materials, which are increasingly becoming a source of inspiration for engineers. Biomimetics—the science of imitating nature—is a growing multidisciplinary field which is now leading to the fabrication of novel materials with remarkable mechanical properties. This article discusses the mechanics of hard biological materials, and more specifically of nacre and bone. These high-performance natural composites are made up of relatively weak components (brittle minerals and soft proteins) arranged in intricate ways to achieve specific combinations of stiffness, strength and toughness (resistance to cracking). Determining which features control the performance of these materials is the first step in biomimetics. These ‘key features’ can then be implemented into artificial bio-inspired synthetic materials, using innovative techniques such as layer-by-layer assembly or ice-templated crystallization. The most promising approaches, however, are self-assembly and biomineralization because they will enable tight control of structures at the nanoscale. In this ‘bottom-up’ fabrication, also inspired from nature, molecular structures and crystals are assembled with a little or no external intervention. The resulting materials will offer new combinations of low weight, stiffness and toughness, with added functionalities such as self-healing. Only tight collaborations between engineers, chemists, materials scientists and biologists will make these ‘next-generation’ materials a reality.


2014 ◽  
Vol 07 (01) ◽  
pp. 1350037 ◽  
Author(s):  
YINGFENG DI ◽  
SISI CUI ◽  
YUEQING GU

A novel near-infrared light responsive microcapsule system, gold nanorod-covered DOX-loaded hollow CaCO 3 microcapsule ( AuNR -HM-DOX) is developed for cancer therapy. The hollow CaCO 3 microcapsules were prepared based on the self-assembly between chitosan and sodium alginate on CaCO 3 particles via layer-by-layer technique, and then covered with gold nanorods to obtain the microcapsule system. Upon near-infrared (NIR) irradiation, microcapsule with gold nanorods can convert the absorbed NIR light into heat. Meanwhile, doxorubicin (DOX), a chemotherapy drug, is loaded into the microcapsule system via electrostatic adsorption for combined photothermal therapy and chemotherapy. Properties of AuNR -HM-DOX including grain diameter, optical spectra were characterized. Confocal fluorescence imaging was performed to observe the morphology of the capsules and existence of DOX in the core, confirming the successful loading of DOX. The release of DOX from the capsules under continuous NIR irradiation was investigated to evaluate the temperature responsiveness of AuNR -HM-DOX. Results indicate that AuNR -HM-DOX microcapsules possess uniform particle size and high light responsiveness. The combination of chemical and physical therapy of AuNR -HM-DOX features great potential as an adjuvant therapeutic alternative material for combined cancer therapy.


2021 ◽  
pp. 102-113
Author(s):  
Adrian P Sutton

Materials design brings together the engineering requirements of a material for an application with the science of the relationships between the structure, properties and method of fabrication of the material. It also takes into account the conditions into which the material will be put in service. It is different from materials selection and materials discovery. The concepts of microstructure and materials as complex systems are introduced. An example is given of materials design using a systems approach. Some materials are produced by self-assembly, as illustrated by the bubble raft, photonic crystals and quantum dots. Self-healing materials and self-cleaning glass are two examples of smart materials.


Solar Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 857-864 ◽  
Author(s):  
Jinhua Huang ◽  
Jia Li ◽  
Junjun Xu ◽  
Zhaozhao Wang ◽  
Wei Sheng ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1884
Author(s):  
Mengfei Jin ◽  
Shangyong Li ◽  
Yanhong Wu ◽  
Dandan Li ◽  
Yantao Han

(1) Background: In the treatment of ulcerative colitis (UC), accurate delivery and release of anti-inflammatory drugs to the site of inflammation can reduce systemic side effects. (2) Methods: We took advantage of this goal to prepare resveratrol-loaded PLGA nanoparticles (RES-PCAC-NPs) by emulsification solvent volatilization. After layer-by-layer self-assembly technology, we deposited chitosan and alginate to form a three-layer polyelectrolyte film. (3) Results: It can transport nanoparticles through the gastric environment to target inflammation sites and slowly release drugs at a specific pH. The resulting RES-PCAC-NPs have an ideal average diameter (~255 nm), a narrow particle size distribution and a positively charged surface charge (~13.5 mV). The Fourier transform infrared spectroscopy showed that resveratrol was successfully encapsulated into PCAC nanoparticles, and the encapsulation efficiency reached 87.26%. In addition, fluorescence imaging showed that RES-PCAC-NPs with positive charges on the surface can effectively target and accumulate in the inflammation site while continuing to penetrate downward to promote mucosal healing. Importantly, oral RES-PCAC-NPs treatment in DSS-induced mice was superior to other results in significantly improved inflammatory markers of UC. (4) Conclusions: Our results strongly prove that RES-PCAC-NPs can target the inflamed colon for maximum efficacy, and this oral pharmaceutical formulation can represent a promising formulation in the treatment of UC.


Sign in / Sign up

Export Citation Format

Share Document