Performance estimation of photovoltaic module under partial shading based on explicit analytical model

Solar Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 327-340
Author(s):  
Yunpeng Zhang ◽  
Jialei Su ◽  
Chen Zhang ◽  
Zhe Lang ◽  
Ming Yang ◽  
...  
2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1992 ◽  
Author(s):  
Ewa Klugmann-Radziemska

The amount of solar radiation reaching the front cover of a photovoltaic module is crucial for its performance. A number of factors must be taken into account at the design stage of the solar installation, which will ensure maximum utilization of the potential arising from the location. During the operation of a photovoltaic installation, it is necessary to limit the shading of the modules caused by both dust and shadowing by trees or other objects. The article presents an analysis of the impact of the radiation reaching the surface of the radiation module on the efficiency obtained. Each of the analyzed aspects is important for obtaining the greatest amount of energy in specific geographical conditions. Modules contaminated by settling dust will be less efficient than those without deposits. The results of experimental studies of this effect are presented, depending on the amount of impurities, including their origins and morphologies. In practice, it is impossible to completely eliminate shadowing caused by trees, uneven terrain, other buildings, chimneys, or satellite dishes, and so on, which limits the energy of solar radiation reaching the modules. An analysis of partial shading for the generated power was also carried out. An important way for maximizing the incoming radiation is the correct positioning of the modules relative to the sun. It is considered optimal to position the modules relative to the light source, that is, the sun, so that the rays fall perpendicular to the surfaces of the modules. Any deviation in the direction of the rays results in a loss in the form of a decrease in the available power of the module. The most beneficial option would be to use sun-tracking systems, but they represent an additional investment cost, and their installations require additional space and maintenance. Therefore, the principle was adopted that stationary systems should be oriented to the south, using the optimal angle of inclination of the module surface appropriate for the location. This article presents the dependence of the decrease in obtained power on the angle of deviation from the optimal one.


2020 ◽  
Vol 275 ◽  
pp. 115363 ◽  
Author(s):  
Luigi Abenante ◽  
Francesco De Lia ◽  
Riccardo Schioppo ◽  
Salvatore Castello

Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Jordan Guillot ◽  
Diego Restrepo-Leal ◽  
Carlos Robles-Algarín ◽  
Ingrid Oliveros

In the field of engineering when a situation is not resolved analytically, efforts are made to develop methods that approximate a possible solution. These efforts have originated the numerical methods known at present, which allow formulating mathematical problems that can be solved using logical and arithmetic operations. This paper presents a comparison between the numerical optimization algorithms golden section search and simulated annealing, which are tested in four different scenarios. These scenarios are functions implemented with a feedforward neural network, which emulate a partial shading behavior in photovoltaic modules with local and global maxima. The presence of the local maxima makes it difficult to track the maximum power point, necessary to obtain the highest possible performance of the photovoltaic module. The programming of the algorithms was performed in C language. The results demonstrate the effectiveness of the algorithms to find global maxima. However, the golden section search method showed a better performance in terms of percentage of error, computation time and number of iterations, except in test scenario number three, where a better percentage of error was obtained with the simulated annealing algorithm for a computational temperature of 1000.


Sign in / Sign up

Export Citation Format

Share Document