Note: Performance estimation of a rotary ultrasonic motor based on two-dimensional analytical model

2018 ◽  
Vol 89 (10) ◽  
pp. 106104
Author(s):  
Chong Li ◽  
Rong Min ◽  
Cunyue Lu
2018 ◽  
Vol 114 ◽  
pp. 62-74 ◽  
Author(s):  
R. Ranjith ◽  
Remya Jayachandran ◽  
K.J. Suja ◽  
Rama S. Komaragiri

2011 ◽  
Vol 317-319 ◽  
pp. 616-620 ◽  
Author(s):  
Guang Qing Wang ◽  
Zhong Wei Zhao

In this article, a novel electro-mechanical energy conversion model of power harvesting from the vibration-induced the piezoelectric stator of the traveling wave rotary ultrasonic motor was proposed. Based on the curvature basis approach, the relationship between the deduced voltage and the mechanical stain induced by piezoelectric polarization was formulated. In addition to the relationships between the maximum induced voltages at the resonance frequency, the conversion energy density and the dimensions of the piezoelectric stator were also derived. The analytical model shows that the vibration-induced voltage is proportional to the exciting electrical voltage magnitude and square of height of the piezoelectric ceramic (PZT) but is inversely proportional to the permittivity of PZT and the damping coefficient of the stator. Some simulations and experimental results demonstrate that the maximum output voltage coincides with the energy conversion analytical model.


1996 ◽  
Vol 39 (8) ◽  
pp. 1221-1229 ◽  
Author(s):  
S. Bellone ◽  
N. Rinaldi ◽  
G.F. Vitale ◽  
G. Cocorullo ◽  
G. Schweeger ◽  
...  

2018 ◽  
Vol 29 (9) ◽  
pp. 2008-2026 ◽  
Author(s):  
Andres E Rivero ◽  
Paul M Weaver ◽  
Jonathan E Cooper ◽  
Benjamin KS Woods

Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.


Sign in / Sign up

Export Citation Format

Share Document