Boron doped amorphous diamond window layer deposited by filtered arc for amorphous silicon alloy p–i–n solar cells

2009 ◽  
Vol 93 (9) ◽  
pp. 1652-1656 ◽  
Author(s):  
Jiaqi Zhu ◽  
Huijie Zhao ◽  
Chunzhu Jiang ◽  
Jiecai Han ◽  
Manlin Tan ◽  
...  
2011 ◽  
Vol 1321 ◽  
Author(s):  
P. H. Cheng ◽  
S. W. Liang ◽  
Y. P. Lin ◽  
H. J. Hsu ◽  
C. H. Hsu ◽  
...  

ABSTRACTThe hydrogenated amorphous silicon (a-Si:H) single-junction thin-film solar cells were fabricated on SnO2:F-coated glasses by plasma-enhanced chemical vapor deposition (PECVD) system. The boron-doped amorphous silicon carbide (a-SiC:H) was served as the window layer (p-layer) and the undoped a-SiC:H was used as a buffer layer (b-layer). The optimization of the p/b/i/n thin-films in a-Si:H solar cells have been carried out and discussed. Considering the effects of light absorption, electron-hole extraction and light-induced degradation, the thicknesses of p, b, n and i layers have been optimized. The optimal a-Si:H thin-film solar cell having an efficiency of 9.46% was achieved, with VOC=906 mV, JSC=14.42 mA/cm2 and FF=72.36%.


1994 ◽  
Vol 336 ◽  
Author(s):  
Y.-M. Li ◽  
F. Jackson ◽  
L. Yang ◽  
B.F. Fieselmann ◽  
L. Russell

ABSTRACTThe window layer (p-layer) critically affects the conversion efficiency of a-Si:H based p-i-n type solar cells. This paper surveys possible alternative window materials in comparison with the standard boron doped a-SiC:H p-layer. A novel wide-gap amorphous silicon alloy, a-Si:F:H, will be shown to be a good alternative p-layer. As an example of nontraditional p-layer, boron based alloys (e.g., a-B:H) exhibit notable photovoltaic action in a-Si:H solar cells. We comment on attempts to deposit μc-Si alloy window layers on textured TCO-coated glass substrates.


2021 ◽  
Author(s):  
SUCHETA JUNEJA ◽  
sushil kumar

Abstract Demand for efficient window layer in thin film solar cells with high crystallinity is ever increasing that finds important application in multi-junction/tandem silicon solar cells. Doping of diborane (B2H6) in hydrogenated silicon films using plasma discharge decomposition of silane (SiH4) and (B2H6) gases were analyzed. The boron flow (FB) to silane ratio was varied from 0–0.30. Variation in film characteristics with B2H6 gas-phase ratio were analyzed, and concluded that doping boron induces crystallization in hydrogenated amorphous silicon (a-Si: H) film structure. The Raman and field emission scanning electron spectroscopy (FESEM) confirmed the boron induced crystallinity effect in silicon films at different diborane flow. The results showed that as boron content increases beyond certain ratio, silicon crystallization suppresses and the crystallite sizes were also reduced. From results, it was observed that crystallinity in FB = 0.05 is 79 % and decreases to 77 % when films are slightly higher doped (FB = 0.10) and further decreases when the films were heavily doped. These results validate that boron suppresses silicon crystallization due to local deformations caused by the impurities. Infra-red absorption studies and their analysis also confirm the crystallization in boron doped films with additional band appears at ~ 611 cm− 1. This band is named as boron induced crystallinity mode of vibrational spectra. The estimated hydrogen content (CH) decreases confirmed crystallinity in the silicon structure with boron doping. Further, the energy dispersive spectroscopy (EDX) indicates the presence of boron and other impurities in deposited silicon films. The effect of boron on crystallinity and crystallite size as well as the mechanism were presented in detailed.


Solar Energy ◽  
2012 ◽  
Vol 86 (1) ◽  
pp. 220-230 ◽  
Author(s):  
Neeraj Dwivedi ◽  
Sushil Kumar ◽  
Sukhbir Singh ◽  
Hitendra K. Malik

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 402 ◽  
Author(s):  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Ming Jie Zhao ◽  
Hai-Jun Lin ◽  
Wen-Zhang Zhu ◽  
...  

Boron-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films are deposited using high frequency 27.12 MHz plasma enhanced chemical vapor deposition system as a window layer of silicon heterojunction (SHJ) solar cells. The CH4 gas flow rate is varied to deposit various a-SiC:H films, and the optical and electrical properties are investigated. The experimental results show that at the CH4 flow rate of 40 sccm the a-SiC:H has a high band gap of 2.1 eV and reduced absorption coefficients in the whole wavelength region, but the electrical conductivity deteriorates. The technology computer aided design simulation for SHJ devices reveal the band discontinuity at i/p interface when the a-SiC:H films are used. For fabricated SHJ solar cell performance, the highest conversion efficiency of 22.14%, which is 0.33% abs higher than that of conventional hydrogenated amorphous silicon window layer, can be obtained when the intermediate band gap (2 eV) a-SiC:H window layer is used.


1998 ◽  
Vol 507 ◽  
Author(s):  
J. Yang ◽  
S. Sugiyama ◽  
S. Guha

ABSTRACTWe have studied amorphous silicon alloy solar cells made by using a modified-very-highfrequency glow discharge at 75 MHz with a deposition rate of ∼6 Å/s. The solar cell performance is compared with those made from conventional glow discharge at 13.56 MHz with lower deposition rates. Cells made at ∼6 Å/s with 75 MHz showed comparable stabilized efficiency to those made at ∼3 Å/s with 13.56 MHz. The best performance, however, was obtained with ∼1 Å/s, including a stabilized 9.3% a-Si alloy single-junction cell employing conventional glow discharge technique. Using 75 MHz, we have achieved 11.1% and 10.0% initial active-area efficiencies for a-Si alloy and a-SiGe alloy n i p cells, respectively. An initial efficiency of 11.0% has also been obtained in a dual bandgap double-junction structure.


Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Pawlikiewicz ◽  
T. Glatfelter ◽  
R. Ross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document