Anti-reflection porous SiO 2 thin film deposited using reactive high-power impulse magnetron sputtering at high working pressure for use in a-Si:H solar cells

2014 ◽  
Vol 130 ◽  
pp. 582-586 ◽  
Author(s):  
Kyeonghun Kim ◽  
Sungmin Kim ◽  
Sehoon An ◽  
Geun-Hyuk Lee ◽  
Donghwan Kim ◽  
...  
Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yung-Lin Chen ◽  
Yi-Cheng Lin ◽  
Wan-Yu Wu

It has always been a huge challenge to prepare the Mo back contact of inorganic compound thin film solar cells (e.g., CIGS, CZTS, Sb2Se3) with good conductivity and adhesion at the same time. High-power impulse magnetron sputtering (HiPIMS) has been proposed as one solution to improve the properties of the thin film. In this study, the HiPIMS technology replaced the traditional DC power sputtering technology to deposit Mo back contact on polyimide (PI) substrates by adjusting the experimental parameters of HiPIMS, including working pressure and pulse DC bias. When the Mo back contact is prepared under a working pressure of 5 mTorr and bias voltage of −20 V, the conductivity of the Mo back contact is 9.9 × 10−6 Ωcm, the residual stress of 720 MPa, and the film still has good adhesion. Under the minimum radius of curvature of 10 mm, the resistivity change rate of Mo back contact does not increase by more than 15% regardless of the 1680 h or 1500 bending cycle tests, and the Mo film still has good adhesion in appearance. Experimental results show that, compared with traditional DC sputtering, HiPIMS coating technology has better conductivity and adhesion at the same time, and is especially suitable for PI substrates.


Author(s):  
Zulkifli Bin Azman ◽  
Nafarizal Bin Nayan ◽  
Ahmad Shuhaimi Bin Abu Bakar ◽  
Zamri Bin Yusop ◽  
Mohamad Hafiz Bin Mamat ◽  
...  

Author(s):  
Niklas Bönninghoff ◽  
Wahyu Diyatmika ◽  
Jinn P. Chu ◽  
Stanislav Mráz ◽  
Jochen M. Schneider ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


Vacuum ◽  
2019 ◽  
Vol 160 ◽  
pp. 410-417 ◽  
Author(s):  
D.L. Ma ◽  
H.Y. Liu ◽  
Q.Y. Deng ◽  
W.M. Yang ◽  
K. Silins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document