Deposition of AlN Thin Film by High-Power Impulse Magnetron Sputtering with Tilted Sputter Target at Different Working Pressure

Author(s):  
Zulkifli Bin Azman ◽  
Nafarizal Bin Nayan ◽  
Ahmad Shuhaimi Bin Abu Bakar ◽  
Zamri Bin Yusop ◽  
Mohamad Hafiz Bin Mamat ◽  
...  
Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yung-Lin Chen ◽  
Yi-Cheng Lin ◽  
Wan-Yu Wu

It has always been a huge challenge to prepare the Mo back contact of inorganic compound thin film solar cells (e.g., CIGS, CZTS, Sb2Se3) with good conductivity and adhesion at the same time. High-power impulse magnetron sputtering (HiPIMS) has been proposed as one solution to improve the properties of the thin film. In this study, the HiPIMS technology replaced the traditional DC power sputtering technology to deposit Mo back contact on polyimide (PI) substrates by adjusting the experimental parameters of HiPIMS, including working pressure and pulse DC bias. When the Mo back contact is prepared under a working pressure of 5 mTorr and bias voltage of −20 V, the conductivity of the Mo back contact is 9.9 × 10−6 Ωcm, the residual stress of 720 MPa, and the film still has good adhesion. Under the minimum radius of curvature of 10 mm, the resistivity change rate of Mo back contact does not increase by more than 15% regardless of the 1680 h or 1500 bending cycle tests, and the Mo film still has good adhesion in appearance. Experimental results show that, compared with traditional DC sputtering, HiPIMS coating technology has better conductivity and adhesion at the same time, and is especially suitable for PI substrates.


Author(s):  
Niklas Bönninghoff ◽  
Wahyu Diyatmika ◽  
Jinn P. Chu ◽  
Stanislav Mráz ◽  
Jochen M. Schneider ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


Vacuum ◽  
2019 ◽  
Vol 160 ◽  
pp. 410-417 ◽  
Author(s):  
D.L. Ma ◽  
H.Y. Liu ◽  
Q.Y. Deng ◽  
W.M. Yang ◽  
K. Silins ◽  
...  

2013 ◽  
Vol 834-836 ◽  
pp. 613-616 ◽  
Author(s):  
Yang Li ◽  
Chen Kui ◽  
Hui Ren Peng ◽  
Ming Jia Zhu ◽  
Ya Wen Pan ◽  
...  

This dissertation employs the method of direct current (DC) magnetron sputtering on the reverse side of the high power LED aluminum substrate to deposit the AlN thin film. And then, we paste the high power LED beads to the front of the substrate, testing and studying the heat dissipation influences of the AlN thin film on the high-power LED beads. In order to compare easily, some parts of the reverse of aluminum substrate should be overlaid thermally conductive silicone. The result indicates that depositing the AIN thin film or the overlay thermally conductive silicone on the back side of the aluminum substrate can improve the heat dissipation capability of high power LED, the AIN thin film especially.


2021 ◽  
Vol 03 (03) ◽  
pp. 103-110
Author(s):  
Dawood S. ALI ◽  
Omar M. DAWOOD

In this work, RF magnetron sputtering plasma for the deposition of Ti6Al4V thin film has been investigated by using optical emission spectroscopy at argon working pressure of 5×10-3 mbar. The emission lines intensity of the plasma were measured using a spectrometer, and the identify peaks within the selective range of patterns and matched with the standard data from the NIST website to measure the plasma parameters. Since the sputtering power plays an important role to the growth of thin film, so the effect of sputtering power of 50, 75, 100, 125 and 150Watt has been studied on produced plasma parameters. The size of Ti6Al4V sputtering target was 50mm in diameter. The argon gas flow was 40 s ccm. One can observe that the lines intensities increased with increasing the sputtering power. The plasma temperature increases from 1.86 to 2.15 eV, while its density increased from 2.69 ×1018 to 2.94 ×1018 cm-3with increasing the rf power from 50 to 150 W, which effect on sputtering rate.


Sign in / Sign up

Export Citation Format

Share Document