scholarly journals Conditional modelling of spatio-temporal extremes for Red Sea surface temperatures

2021 ◽  
Vol 41 ◽  
pp. 100482
Author(s):  
Emma S. Simpson ◽  
Jennifer L. Wadsworth
2003 ◽  
Vol 54 (4) ◽  
pp. 409 ◽  
Author(s):  
C. Phillip Goodyear

Atlantic blue and white marlin are currently overfished, primarily as a result of bycatch in pelagic longlines directed at other species. One possible management measure to reduce fishing mortality on these species would be to restrict fishing effort in times and places with exceptionally high marlin catch per unit effort (CPUE). The International Commission for the Conservation of Atlantic Tunas maintains a database of catch and catch-effort statistics of participating nations. These data were analysed to determine whether the distribution of CPUE is sufficiently heterogeneous in time and space that such measures might provide meaningful management alternatives. The resulting distributions of catch rates were also contrasted with monthly average sea surface temperatures to examine the possible association between temperature and CPUE. The results show spatio-temporal heterogeneity in catch rates that may be partly explained by seasonal changes in sea surface temperatures. The time–area concentrations of high CPUE differ between the species. This observed heterogeneity might be exploited to develop alternatives for reducing fishing mortality for future management of the fisheries, but additional research is needed to refine the spatial scale of the analysis and to more fully understand the factors contributing to the observed distribution.


2017 ◽  
Vol 52 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Chunli Liu ◽  
Qiwei Sun ◽  
Qianguo Xing ◽  
Zhenlin Liang ◽  
Yue Deng ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Niels J. de Winter ◽  
Inigo A. Müller ◽  
Ilja J. Kocken ◽  
Nicolas Thibault ◽  
Clemens V. Ullmann ◽  
...  

AbstractSeasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 °N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 °N comprised 15 to 27 °C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates.


Sign in / Sign up

Export Citation Format

Share Document