Spatio-temporal variability of sea surface temperatures in the Red Sea and their implications on Saudi Arabia coral reefs

2021 ◽  
pp. 1-15
Author(s):  
Mohamed Hereher ◽  
Rashad Bantan ◽  
Amin Gheith ◽  
Ahmed El-Kenawy
2017 ◽  
Vol 52 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Chunli Liu ◽  
Qiwei Sun ◽  
Qianguo Xing ◽  
Zhenlin Liang ◽  
Yue Deng ◽  
...  

2007 ◽  
Vol 4 (5) ◽  
pp. 310 ◽  
Author(s):  
Graham Jones ◽  
Mark Curran ◽  
Andrew Broadbent ◽  
Stacey King ◽  
Esther Fischer ◽  
...  

Environmental context. Levels of atmospheric dimethylsulfide (DMS) and its oxidation products are reputed to affect the microphysics of clouds and the amount of incoming solar radiation to the ocean. Studies of DMS and its precursor compound dimethylsulfoniopropionate (DMSP) at two inshore fringing coral reefs in the Great Barrier Reef highlight pronounced seasonal, diurnal and tidal variation of these compounds, with dissolved DMS and DMSP significantly correlated with sea surface temperatures (SSTs) up to 30°C. During a coral bleaching episode at one of the reef sites, dissolved DMS concentrations decreased when SSTs exceeded 30°C, a result replicated in chamber experiments with staghorn coral. The results raise interesting questions on the role of these organosulfur substances in corals and whether DMS emissions from coral reefs could have an effect on regional climate in the Great Barrier Reef. Abstract. A study of dissolved dimethylsulfide (DMSw), dissolved and particulate dimethylsulfoniopropionate (DMSPd, DMSPp), and atmospheric dimethylsulfide (DMSa) was carried out at two inshore fringing coral reefs (Orpheus Island and Magnetic Island) in the Great Barrier Reef (GBR) to investigate the variation of these organosulfur substances with season, sea surface temperature, tides, and time of day. Highest concentrations of these organosulfur substances occurred in the summer months at both reefs, with lowest concentrations occurring during winter, suggesting a biological source of these compounds from the reef flats. At the Orpheus Island reef, where more measurements were made, DMSw and DMSPd were significantly correlated with tidal height during the flooding tide over the reef (r = 0.37, P < 0.05; r = 0.58, P < 0.01 respectively), and elevated DMSw and DMSa concentrations generally occurred in the daylight hours, possibly reflecting photosynthetic production of DMSw from the reef flats. Chamber experiments with the staghorn coral Acropora formosa confirmed that corals produce DMSw in the day. DMSw (r = 0.43, P < 0.001) and DMSPd (r = 0.59, P < 0.001) were significantly positively correlated with sea surface temperatures (SST) at the Orpheus Island reef. During severe coral bleaching at the eutrophic Magnetic Island reef in the summer, DMSw concentrations decreased at SSTs greater than 30°C, suggesting that reef production of DMSw decreases during elevated SSTs. This was later confirmed in chamber experiments with Acropora formosa, which showed that when this coral was exposed to temperatures at its bleaching threshold (31°C), decreased production of DMSw occurred. These results suggest that DMS and DMSP in coral zooxanthellae may be functioning as antioxidants, but further experiments are needed to substantiate this.


2003 ◽  
Vol 54 (4) ◽  
pp. 409 ◽  
Author(s):  
C. Phillip Goodyear

Atlantic blue and white marlin are currently overfished, primarily as a result of bycatch in pelagic longlines directed at other species. One possible management measure to reduce fishing mortality on these species would be to restrict fishing effort in times and places with exceptionally high marlin catch per unit effort (CPUE). The International Commission for the Conservation of Atlantic Tunas maintains a database of catch and catch-effort statistics of participating nations. These data were analysed to determine whether the distribution of CPUE is sufficiently heterogeneous in time and space that such measures might provide meaningful management alternatives. The resulting distributions of catch rates were also contrasted with monthly average sea surface temperatures to examine the possible association between temperature and CPUE. The results show spatio-temporal heterogeneity in catch rates that may be partly explained by seasonal changes in sea surface temperatures. The time–area concentrations of high CPUE differ between the species. This observed heterogeneity might be exploited to develop alternatives for reducing fishing mortality for future management of the fisheries, but additional research is needed to refine the spatial scale of the analysis and to more fully understand the factors contributing to the observed distribution.


Sign in / Sign up

Export Citation Format

Share Document