An interesting property of the arcsine distribution and its applications

2015 ◽  
Vol 105 ◽  
pp. 88-95 ◽  
Author(s):  
Jia-Jian Jiang ◽  
Ping He ◽  
Kai-Tai Fang
Erkenntnis ◽  
2021 ◽  
Author(s):  
David Atkinson ◽  
Jeanne Peijnenburg

AbstractAs is well known, implication is transitive but probabilistic support is not. Eells and Sober, followed by Shogenji, showed that screening off is a sufficient constraint for the transitivity of probabilistic support. Moreover, this screening off condition can be weakened without sacrificing transitivity, as was demonstrated by Suppes and later by Roche. In this paper we introduce an even weaker sufficient condition for the transitivity of probabilistic support, in fact one that can be made as weak as one wishes. We explain that this condition has an interesting property: it shows that transitivity is retained even though the Simpson paradox reigns. We further show that by adding a certain restriction the condition can be turned into one that is both sufficient and necessary for transitivity.


2021 ◽  
Vol 5 (2) ◽  
pp. 31
Author(s):  
Olga Svynchuk ◽  
Oleg Barabash ◽  
Joanna Nikodem ◽  
Roman Kochan ◽  
Oleksandr Laptiev

The rapid growth of geographic information technologies in the field of processing and analysis of spatial data has led to a significant increase in the role of geographic information systems in various fields of human activity. However, solving complex problems requires the use of large amounts of spatial data, efficient storage of data on on-board recording media and their transmission via communication channels. This leads to the need to create new effective methods of compression and data transmission of remote sensing of the Earth. The possibility of using fractal functions for image processing, which were transmitted via the satellite radio channel of a spacecraft, is considered. The information obtained by such a system is presented in the form of aerospace images that need to be processed and analyzed in order to obtain information about the objects that are displayed. An algorithm for constructing image encoding–decoding using a class of continuous functions that depend on a finite set of parameters and have fractal properties is investigated. The mathematical model used in fractal image compression is called a system of iterative functions. The encoding process is time consuming because it performs a large number of transformations and mathematical calculations. However, due to this, a high degree of image compression is achieved. This class of functions has an interesting property—knowing the initial sets of numbers, we can easily calculate the value of the function, but when the values of the function are known, it is very difficult to return the initial set of values, because there are a huge number of such combinations. Therefore, in order to de-encode the image, it is necessary to know fractal codes that will help to restore the raster image.


1964 ◽  
Vol 42 (8) ◽  
pp. 1564-1572 ◽  
Author(s):  
D. D. Betts

Statistical mechanical ensembles of interacting systems localized at the sites of a regular lattice and each having four possible states are considered. A set of lattice functions is introduced which permits a considerable simplification of the partition function for general nearest-neighbor interactions. The particular case of the Potts four-state ferromagnet model is solved exactly in two dimensions. The order–disorder problem for a certain quaternary alloy model is also solved exactly on a square net. The quaternary alloy model has the interesting property that it has two critical temperatures and exhibits two different types of long-range order. The partition function for the spin-3/2 Ising model on a square net is expressed in terms of graphs without odd vertices, but has not been solved exactly.


1980 ◽  
Vol 75 (369) ◽  
pp. 173-175 ◽  
Author(s):  
Barry C. Arnold ◽  
Richard A. Groeneveld
Keyword(s):  

1992 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Charles Schnabolk ◽  
Theodore Raphan

Off-vertical-axis rotation (OVAR) in darkness generates continuous compensatory eye velocity. No model has yet been presented that defines the signal processing necessary to estimate head velocity in three dimensions for arbitrary rotations during OVAR. The present study develops a model capable of estimating all 3 components of head velocity in space accurately. It shows that processing of two patterns of otolith activation, one delayed with respect to the other, for each plane of eye movement is not sufficient. (A pattern in this context is an array of signals emanating from the otoliths. Each component of the array is a signal corresponding to a class of otolith hair cells with a given polarization vector as described by Tou and Gonzalez in 1974.) The key result is that estimation of head velocity in space can be achieved by processing three temporally displaced patterns, each representing a sampling of gravity as the head rotates. A vector cross product of differences between pairs of the sampled gravity vectors implements the estimation. An interesting property of this model is that the component of velocity about the axis of rotation reduces to that derived previously using the pattern estimator model described by Raphan and Schnabolk in 1988 and Fanelli et al in 1990. This study suggests that the central nervous system (CNS) maintains a current as well as 2 delayed representations of gravity at every head orientation during rotation. It also suggests that computing vector cross products and implementing delays may be fundamental operations in the CNS for generating orientation information associated with motion.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950158 ◽  
Author(s):  
Gamal Nashed

We derive an exact static solution in diverse dimension, without any constraints, to the field equations of [Formula: see text] gravitational theory using a planar spacetime with two unknown functions, i.e. [Formula: see text] and [Formula: see text]. The black hole solution is characterized by two constants, [Formula: see text] and [Formula: see text], one is related to the mass of the black hole, [Formula: see text], and the other is responsible to make the solution deviate from the teleparallel equivalent of general relativity (TEGR). We show that the analytic function [Formula: see text] depends on the constant [Formula: see text] and becomes constant function when [Formula: see text] which corresponds to the TEGR case. The interesting property of this solution is the fact that it makes the singularity of the Kretschmann invariant much softer than the TEGR case. We calculate the energy of this black hole and show that it is equivalent to ADM mass. Applying a coordinate transformation, we derive a rotating black hole with nontrivial values of the torsion scalar and [Formula: see text]. Finally, we examine the physical properties of this black hole solution using the laws of thermodynamics and show that it has thermodynamical stability.


1998 ◽  
Vol 63 (3) ◽  
pp. 831-859 ◽  
Author(s):  
A. Avron

AbstractWe show that the elimination rule for the multiplicative (or intensional) conjunction Λ is admissible in many important multiplicative substructural logics. These include LLm (the multiplicative fragment of Linear Logic) and RMIm (the system obtained from LLm by adding the contraction axiom and its converse, the mingle axiom.) An exception is Rm (the intensional fragment of the relevance logic R, which is LLm together with the contraction axiom). Let SLLm and SRm be, respectively, the systems which are obtained from LLm and Rm by adding this rule as a new rule of inference. The set of theorems of SRm is a proper extension of that of Rm, but a proper subset of the set of theorems of RMIm. Hence it still has the variable-sharing property. SRm has also the interesting property that classical logic has a strong translation into it. We next introduce general algebraic structures, called strong multiplicative structures, and prove strong soundness and completeness of SLLm relative to them. We show that in the framework of these structures, the addition of the weakening axiom to SLLm corresponds to the condition that there will be exactly one designated element, while the addition of the contraction axiom corresponds to the condition that there will be exactly one nondesignated element (in the first case we get the system BCKm, in the second - the system SRm). Various other systems in which multiplicative conjunction functions as a true conjunction are studied, together with their algebraic counterparts.


2019 ◽  
Author(s):  
Momoko Hayamizu ◽  
Kazuhisa Makino

Abstract 'Tree-based' phylogenetic networks provide a mathematically-tractable model for representing reticulate evolution in biology. Such networks consist of an underlying 'support tree' together with arcs between the edges of this tree. However, a tree-based network can have several such support trees, and this leads to a variety of algorithmic problems that are relevant to the analysis of biological data. Recently, Hayamizu (arXiv:1811.05849 [math.CO]) proved a structure theorem for tree-based phylogenetic networks and obtained linear-time and linear-delay algorithms for many basic problems on support trees, such as counting, optimisation, and enumeration. In the present paper, we consider the following fundamental problem in statistical data analysis: given a tree-based phylogenetic network $N$ whose arcs are associated with probability, create the top-$k$ support tree ranking for $N$ by their likelihood values. We provide a linear-delay (and hence optimal) algorithm for the problem and thus reveal the interesting property of tree-based phylogenetic networks that ranking top-$k$ support trees is as computationally easy as picking $k$ arbitrary support trees.


1995 ◽  
Vol 381 ◽  
Author(s):  
Ken Numata ◽  
Thomas R. Seha ◽  
Shin-Puu Jeng ◽  
Tsuyoshi Tanaka

AbstractMethyl siloxane spin-on-glass (SOG) is a conventional gap-filling material. In accordance with the requirement of low permittivity, many of major SOG suppliers are developing new types of methyl siloxane SOGs.The most interesting property of these SOGs is their permittivity, which we measured by making stack structures of Al-0.5%Cu / TEOS CVD SiO2 / SOG / n+ Si. We also studied I-V characteristics, refractive indices, FT-IR spectra, stress, and moisture resistance.All of the SOGs showed small stress and fair moisture resistance. Leakage currents were less than 2.5E-10 A/cm2 for bias voltages up to 5V. Permittivities ranged from 2.9 to 3.6. We observed a correlation between permittivity and FT-IR spectral features associated with Si-O-Si bonds. Reducing the number density of Si-O-Si bonds may be an effective way to lower the permittivity of this class of SOGs


Sign in / Sign up

Export Citation Format

Share Document