A comparative study of the electronic band structures of hydrogen-terminated silicon chains by density functional theory with and without GW correction

2008 ◽  
Vol 145 (5-6) ◽  
pp. 275-278 ◽  
Author(s):  
A.J. Lu ◽  
R.Q. Zhang
2020 ◽  
Vol 6 (4) ◽  
pp. 61
Author(s):  
Ian Shuttleworth

The electronic band structures of the ordered L12 and L10 phases of the PtxM1−x (M = Fe, Co and Ni) alloys were investigated using spin-polarized density functional theory (DFT). The relative contributions of both itinerant (Stoner) and localized magnetism at the high-symmetry k-points were determined and discussed qualitatively. Significant directional effects were identified along the A and R directions of the L10 and L12 alloys, respectively, and are discussed in terms of charge channeling effects.


2013 ◽  
Vol 113 (6) ◽  
pp. 063517 ◽  
Author(s):  
Ming-Hsien Lee ◽  
Po-Liang Liu ◽  
Yung-An Hong ◽  
Yen-Ting Chou ◽  
Jia-Yang Hong ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11341
Author(s):  
Sungjin Park ◽  
Byungki Ryu ◽  
SuDong Park

Thermoelectric power generation is a promising candidate for automobile energy harvesting technologies because it is eco-friendly and durable owing to direct power conversion from automobile waste heat. Because Bi−Te systems are well-known thermoelectric materials, research on (Bi2)m(Bi2Te3)n homologous series can aid the development of efficient thermoelectric materials. However, to the best of our knowledge, (Bi2)m(Bi2Te3)n has been studied through experimental synthesis and measurements only. Therefore, we performed density functional theory calculations of nine members of (Bi2)m(Bi2Te3)n to investigate their structure, phase stability, and electronic band structures. From our calculations, although the total energies of all nine phases are slightly higher than their convex hulls, they can be metastable owing to their very small energy differences. The electric transport types of (Bi2)m(Bi2Te3)n do not change regardless of the exchange–correlation functionals, which cause tiny changes in the atomic structures, phase stabilities, and band structures. Additionally, only two phases (Bi8Te9, BiTe) became semimetallic or semiconducting depending on whether spin–orbit interactions were included in our calculations, and the electric transport types of the other phases were unchanged. As a result, it is expected that Bi2Te3, Bi8Te9, and BiTe are candidates for thermoelectric materials for automobile energy harvesting technologies because they are semiconducting.


Author(s):  
Chih Shan Tan ◽  
Michael H. Huang

Density functional theory (DFT) calculations have been performed on 1 to 9 layers of Cu2O (100), (111), and (110) planes to further understand the electronic band structures and the origin...


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80118-80121 ◽  
Author(s):  
Baotao Kang ◽  
Jong Hun Moon ◽  
Jin Yong Lee

In the present paper, density functional theory calculations have been implemented by using Dmol3 to study the electronic band structures of β-graphyne nanotubes (βGyNTs) and γ-graphyne nanotubes (γGyNTs).


2018 ◽  
Vol 57 (2) ◽  
pp. 137-142 ◽  
Author(s):  
M.A. Rozhkov ◽  
A.L. Kolesnikova ◽  
I. Hussainova ◽  
M.A. Kaliteevskii ◽  
T.S. Orlova ◽  
...  

Abstract Graphene crystals, containing arrays of disclination defects, are modeled and their energies are calculated using molecular dynamics (MD) simulation technique. Two cases are analyzed in details: (i) pseudo-graphenes, which contain the alternating sign disclination ensembles and (ii) graphene with periodic distribution of disclination quadrupoles. Electronic band structures of disclinated graphene crystals are calculated in the framework of density functional theory (DFT) approach. The evolution of the Dirac cone and magnitude of band gap in the band structure reveal a dependence on the density of disclination quadrupoles and alternating sign disclinations. The electronic properties of graphene with disclination ensembles are discussed.


2009 ◽  
Vol 23 (01) ◽  
pp. 97-104 ◽  
Author(s):  
HARUN AKKUS

The electronic band structures of some A 5 B 6 C 7-type ternary compounds, BiSeI , BiSI , BiSCl , BiSBr , BiSeBr and SbSeBr , are investigated using the density functional theory and pseudopotential theory under the generalized gradient approximation (GGA). The electronic band structures obtained show that these crystals, except for BiSeI , have an indirect band gap.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kevin F. Garrity ◽  
Kamal Choudhary

AbstractWannier tight-binding Hamiltonians (WTBH) provide a computationally efficient way to predict electronic properties of materials. In this work, we develop a computational workflow for high-throughput Wannierization of density functional theory (DFT) based electronic band structure calculations. We apply this workflow to 1771 materials (1406 3D and 365 2D), and we create a database with the resulting WTBHs. We evaluate the accuracy of the WTBHs by comparing the Wannier band structures to directly calculated spin-orbit coupling DFT band structures. Our testing includes k-points outside the grid used in the Wannierization, providing an out-of-sample test of accuracy. We illustrate the use of WTBHs with a few example applications. We also develop a web-app that can be used to predict electronic properties on-the-fly using WTBH from our database. The tools to generate the Hamiltonian and the database of the WTB parameters are made publicly available through the websites https://github.com/usnistgov/jarvis and https://jarvis.nist.gov/jarviswtb.


2019 ◽  
Vol 74 (11) ◽  
pp. 1023-1030 ◽  
Author(s):  
Selgin AL

AbstractThis study adopts density functional theory to predict and thoroughly investigate new types of perovskite compounds for solid state storage of hydrogen. CaTiH3 and MgTiH3 perovskite hydrides are chosen and investigated using density functional theory in terms of ground state properties, electronic, mechanical, and thermodynamic properties for solid state storage of hydrogen. Stability of compounds are verified by calculating formation energies. Several crucial parameters; elastic constants, bulk, Young, Shear modulus, and Cauchy pressures are computed and analysed in great detail. Mechanical stability evaluation indicated that both compounds are mechanically stable whereas MgTiH3 is ductile whilst CaTiH3 is a brittle material. In addition, mechanical anisotropy is analysed using 2D surfaces. Both compounds showed anisotropic behaviour in all directions except for linear compressibility. Electronic band structures and their corresponding density of states of compounds are obtained. The results indicate that both compounds have metallic nature. From the results presented here, it can be predicted that MgTiH3 is a better material for hydrogen storage with a gravimetric density of ∼4.01 wt %.


2021 ◽  
Vol 63 ◽  
pp. 1-8
Author(s):  
Thi Viet Bac Phung ◽  
◽  
Ba Lich Pham ◽  
Van An Dinh ◽  
◽  
...  

The adsorption mechanism of CO gas molecule onto the surface of free-standing graphene and graphene on the α-SiO2 substrate is studied using the density functional theory. CO molecule is found to be physically adsorbed on the graphene surface. The adsorption properties of CO gas on free-standing graphene and graphene/α-SiO2, such as adsorption energy, adsorption distance, and response length, are calculated in detail. α-SiO2 has been found as a good substrate to enhance the adsorption energy of CO onto graphene. The electronic band structures and density of states (DOS) analysis results show that the interaction between α-SiO2 and graphene breaks the symmetry of graphene and a tunnelling bandgap occurs at the Dirac point. α-SiO2 substrate modifies the electronic band structures of free-standing graphene and opens a narrow bandgap of 51 meV. The calculated charge transfer data suggest that the presence of α-SiO2 enhances the charge donation of CO molecule to the graphene surface.


Sign in / Sign up

Export Citation Format

Share Document