Pedestrian single file movement on stairway: Investigating the impact of stair configuration on pedestrian ascent and descent fundamental diagram

2021 ◽  
Vol 143 ◽  
pp. 105409
Author(s):  
Jianyu Wang ◽  
Jian Ma ◽  
Peng Lin ◽  
Majid Sarvi ◽  
Ruoyu Li
2018 ◽  
Vol 10 (12) ◽  
pp. 4694 ◽  
Author(s):  
Xiang Wang ◽  
Po Zhao ◽  
Yanyun Tao

Overloaded heavy vehicles (HVs) have significant negative impacts on traffic conditions due to their inferior driving performance. Highway authorities need to understand the impact of overloaded HVs to assess traffic conditions and set management strategies. We propose a multi-class traffic flow model based on Smulders fundamental diagram to analyze the influence of overloaded HVs on traffic conditions. The relationship between the overloading ratio and maximum speed is established by freeway toll collection data for different types of HVs. Dynamic passenger car equivalent factors are introduced to represent the various impacts of overloaded HVs in different traffic flow patterns. The model is solved analytically and discussed in detail in the appendices. The model validation results show that the proposed model can represent traffic conditions more accurately with consideration for overloaded HVs. The scenario tests indicate that the increase of overloaded HVs leads to both a higher congestion level and longer duration.


2015 ◽  
Vol 9 (12) ◽  
pp. 88 ◽  
Author(s):  
Mohammed Mahmod Shuaib ◽  
Zarita Zainuddin

<p class="zhengwen"><span lang="EN-GB">The pedestrian traffic flow in bidirectional walkways is very crucial aspect influenced by the level of pedestrians’ decisions.</span><span lang="EN-GB"> In this article, the authors show that the simulated pedestrians walking based on crowd dynamics models of low level mechanism of navigation (operational level) are short-sighted in avoiding counter flow. Such limitation resulted in unrealistic formation of motion in bidirectional flow, that the movement is less systematic and the lanes are less coherent than what in real situation. To obtain a more representative model, the authors improve the investigation capability model as a tactical decision model to be incorporated into a crowd dynamics model to reproduce better formation of motion. This is accomplished by granting the pedestrians the ability to investigate the macroscopic behaviors in their investigation areas and make decisions for convenience flow. The new model considers the average density and flow inside such areas and models their effect on the pedestrians' decisions. Simulations are performed to validate the work qualitatively by tracing the behavior of the simulated pedestrians and studying the impact of this behavior on the self-organized phenomenon: lane formation. Furthermore, the fundamental diagram of bidirectional flow is reproduced and compared with experimental fundamental diagrams.</span></p>


2015 ◽  
Vol 26 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Chao Zhao ◽  
Ning Jia

Intersections without signal control widely exist in urban road networks. This paper studied the traffic flow in a noncontrolled intersection within an iterated game framework. We assume drivers have learning ability and can repetitively adjust their strategies (to give way or to rush through) in the intersection according to memories. A cellular automata model is applied to investigate the characteristics of the traffic flow. Numerical experiments indicate two main findings. First, the traffic flow experiences a "volcano-shaped" fundamental diagram with three different phases. Second, most drivers choose to give way in the intersection, but the aggressive drivers cannot be completely eliminated, which is coincident with field observations. Analysis are also given out to explain the observed phenomena. These findings allow deeper insight of the real-world bottleneck traffic flow.


2020 ◽  
Author(s):  
Florian Dandl ◽  
Gabriel Tilg ◽  
Majid Rostami-Shahrbabaki ◽  
Klaus Bogenberger

The growing popularity of mobility-on-demand fleets increases the importance to understand the impact of mobility-on-demand fleets on transportation networks and how to regulate them. For this purpose, transportation network simulations are required to contain corresponding routing methods. We study the trade-off between computational efficiency and routing accuracy of different approaches to routing fleets in a dynamic network simulation with endogenous edge travel times: a computationally cheap but less accurate Network Fundamental Diagram (NFD) based method and a more typical Dynamic Traffic Assignment (DTA) based method. The NFD-based approach models network dynamics with a network travel time factor that is determined by the current average network speed and scales free-flow travel times. We analyze the different computational costs of the approaches in a case study for 10,000 origin-destination (OD) pairs in a network of the city of Munich, Germany that reveals speedup factors in the range of 100. The trade-off for this is less accurate travel time estimations for individual OD pairs. Results indicate that the NFD-based approach overestimates the DTA-based travel times, especially when the network is congested. Adjusting the network travel time factor based on pre-processed DTA results, the NFD-based routing approach represents a computationally very efficient methodology that also captures traffic dynamics in an aggregated way.


Author(s):  
Aledia Bilali ◽  
Ulrich Fastenrath ◽  
Klaus Bogenberger

Ride pooling services are considered as a customer-centric mode of transportation, but, at the same time, an environmentally friendly one, because of the expected positive impacts on traffic congestion. This paper presents an analytical model that can estimate the traffic impacts of ride pooling on a city by using a previously developed shareability model, which captures the percentage of shared trips in an area, and the existence of a macroscopic fundamental diagram for the network of consideration. Moreover, the analytical model presented also investigates the impact that improving the average velocity of a city has on further increasing the percentage of shared trips in an operation area. The model is validated by means of microscopic traffic simulations for a ride pooling service operating in the city of Munich, Germany, where private vehicle trips are substituted with pooled vehicle trips for different penetration rates of the service. The results show that the average velocity in the city can be increased by up to 20% for the scenario when all private vehicle trips are substituted with pooled vehicle trips; however, the improvement is lower for smaller penetration rates of ride pooling. The operators and cities can use this study to quickly estimate the traffic impacts of introducing a ride pooling service in a certain area and for a certain set of service quality parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yingying Ma ◽  
Yuanqi Xie ◽  
Yongjie Lin

To study the influence mechanism of dedicated bus lanes on the urban road network, this paper proposes a novel analytical model of macroscopic fundamental diagram (MFD) and passenger macroscopic fundamental diagram (p-MFD) and the corresponding indicators based on MFD and p-MFD to evaluate the operation of the network. Taking the grid network as an example, this paper collects traffic flow to calibrate the developed MFD and p-MFD and evaluates the network performance under different proportions of dedicated bus lanes. The simulation results show that the larger the proportion of dedicated bus lanes, the greater the impact on the rising section and the stable section of MFD and the descending section and post-stable section of p-MFD. Further analysis for the sensitivity of simulation experiments found that the strategy of setting dedicated bus lanes will improve the efficiency of vehicle and passenger transport when the road network is in a smooth state and ensure the continuous output of passengers when the network is in a congested state.


2020 ◽  
Author(s):  
Florian Dandl ◽  
Gabriel Tilg ◽  
Majid Rostami-Shahrbabaki ◽  
Klaus Bogenberger

The growing popularity of mobility-on-demand fleets increases the importance to understand the impact of mobility-on-demand fleets on transportation networks and how to regulate them. For this purpose, transportation network simulations are required to contain corresponding routing methods. We study the trade-off between computational efficiency and routing accuracy of different approaches to routing fleets in a dynamic network simulation with endogenous edge travel times: a computationally cheap but less accurate Network Fundamental Diagram (NFD) based method and a more typical Dynamic Traffic Assignment (DTA) based method. The NFD-based approach models network dynamics with a network travel time factor that is determined by the current average network speed and scales free-flow travel times. We analyze the different computational costs of the approaches in a case study for 10,000 origin-destination (OD) pairs in a network of the city of Munich, Germany that reveals speedup factors in the range of 100. The trade-off for this is less accurate travel time estimations for individual OD pairs. Results indicate that the NFD-based approach overestimates the DTA-based travel times, especially when the network is congested. Adjusting the network travel time factor based on pre-processed DTA results, the NFD-based routing approach represents a computationally very efficient methodology that also captures traffic dynamics in an aggregated way.


Author(s):  
Guanhao Xu ◽  
Zhengyao Yu ◽  
Vikash V. Gayah

Network macroscopic fundamental diagrams (MFDs) have recently been shown to exist in real-world urban traffic networks. The existence of an MFD facilitates the modeling of urban traffic network dynamics at a regional level, which can be used to identify and refine large-scale network-wide control strategies. To be useful, MFD-based modeling frameworks require an estimate of the functional form of a network’s MFD. Analytical methods have been proposed to estimate a network’s MFD by abstracting the network as a single ring-road or corridor and modeling the flow–density relationship on that simplified element. However, these existing methods cannot account for the impact of turning traffic, as only a single corridor is considered. This paper proposes a method to estimate a network’s MFD when vehicles are allowed to turn into or out of a corridor. A two-ring abstraction is first used to analyze how turning will affect vehicle travel in a more general network, and then the model is further approximated using a single ring-road or corridor. This approximation is useful as it facilitates the application of existing variational theory-based methods (the stochastic method of cuts) to estimate the flow–density relationship on the corridor, while accounting for the stochastic nature of turning. Results of the approximation compared with a more realistic simulation that includes features that cannot be captured using variational theory—such as internal origins and destinations—suggest that this approximation works to estimate a network’s MFD when turning traffic is present.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shanglu He ◽  
Xiaoyu Guo ◽  
Fan Ding ◽  
Yong Qi ◽  
Tao Chen

Connected and autonomous vehicles (CAVs) are on the way to the field application. In the beginning stage, there will be a mixed traffic flow, containing the regular human-driven vehicles and CAVs with a low penetration rate. Recently, the discussion about the impact of a small proportion of CAVs in the mixed traffic is controversial. This paper investigated the possibility of applying the limited data from these lowly penetrated CAVs to estimate the average freeway link speeds based on the Kalman filtering (KF) method. First, this paper established a VISSIM-based microsimulation model to mimic the mixed traffic with different CAV penetration rates. The characteristics of this mixed traffic were then discussed based on the simulation data, including the sample size distribution, data-missing rate, speed difference, and fundamental diagram. Accordingly, the traditional KF-based method was introduced and modified to adapt data from CAVs. Finally, the evaluations of the estimation accuracy and the sensitive analysis of the proposed method were conducted. The results revealed the possibility and applicability of link speed estimation using data from a small proportion of CAVs.


Sign in / Sign up

Export Citation Format

Share Document