Deep learning for supervised classification of spatial epidemics

2019 ◽  
Vol 29 ◽  
pp. 187-198 ◽  
Author(s):  
Carolyn Augusta ◽  
Rob Deardon ◽  
Graham Taylor
2021 ◽  
Vol 61 ◽  
pp. 101252
Author(s):  
César Capinha ◽  
Ana Ceia-Hasse ◽  
Andrew M. Kramer ◽  
Christiaan Meijer

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6661
Author(s):  
Lars Schmarje ◽  
Johannes Brünger ◽  
Monty Santarossa ◽  
Simon-Martin Schröder ◽  
Rainer Kiko ◽  
...  

Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures.


2021 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Qingyan Wang ◽  
Meng Chen ◽  
Junping Zhang ◽  
Shouqiang Kang ◽  
Yujing Wang

Hyperspectral image (HSI) data classification often faces the problem of the scarcity of labeled samples, which is considered to be one of the major challenges in the field of remote sensing. Although active deep networks have been successfully applied in semi-supervised classification tasks to address this problem, their performance inevitably meets the bottleneck due to the limitation of labeling cost. To address the aforementioned issue, this paper proposes a semi-supervised classification method for hyperspectral images that improves active deep learning. Specifically, the proposed model introduces the random multi-graph algorithm and replaces the expert mark in active learning with the anchor graph algorithm, which can label a considerable amount of unlabeled data precisely and automatically. In this way, a large number of pseudo-labeling samples would be added to the training subsets such that the model could be fine-tuned and the generalization performance could be improved without extra efforts for data manual labeling. Experiments based on three standard HSIs demonstrate that the proposed model can get better performance than other conventional methods, and they also outperform other studied algorithms in the case of a small training set.


2020 ◽  
Author(s):  
Melanie Marochov ◽  
Patrice Carbonneau ◽  
Chris Stokes

<p>In recent decades, a wealth of research has focused on elucidating the key controls on the mass loss of the Greenland Ice Sheet and its response to climate forcing, specifically in relation to the drivers of spatio-temporally variable outlet glacier change. Despite the increasing availability of high-resolution satellite data, the time-consuming nature of the manual methods traditionally used to analyse satellite imagery has resulted in a significant bottleneck in the monitoring of outlet glacier change. Recent advances in deep learning applied to image processing have opened up a new frontier in the area of automated delineation of glacier termini. However, at this stage, there remains a paucity of research on the use of deep learning for image classification of outlet glacier landscapes. In this contribution, we apply a deep learning approach based on transfer learning to automatically classify satellite images of Helheim glacier, the fastest flowing outlet glacier in eastern Greenland. The method uses the well-established VGG16 convolutional neural network (CNN), and is trained on 224x224 pixel tiles derived from Sentinel-2 RGB bands, which have a spatial resolution of 10 metres. Based on features learned from ImageNet and limited training data, our deep learning model can classify glacial environments with >85% accuracy. In future stages of this research, we will use a new method originally developed for fluvial settings, dubbed ‘CNN-Supervised Classification’ (CSC). CSC uses a pre-trained CNN (in this case our VGG16 model) to replace the human operator’s role in traditional supervised classification by automatically producing new label data to train a pixel-level neural network classifier for any new image. This transferable approach to image classification of outlet glacier landscapes permits not only automated terminus delineation, but also facilitates the efficient analysis of numerous processes controlling outlet glacier behaviour, such as fjord geometry, subglacial plumes, and supra-glacial lakes.</p>


Sign in / Sign up

Export Citation Format

Share Document