Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil

2007 ◽  
Vol 92 (1-2) ◽  
pp. 18-29 ◽  
Author(s):  
J FRANCHINI ◽  
C CRISPINO ◽  
R SOUZA ◽  
E TORRES ◽  
M HUNGRIA
2019 ◽  
Vol 281 ◽  
pp. 100-110 ◽  
Author(s):  
Felipe Bonini da Luz ◽  
Vanderlei Rodrigues da Silva ◽  
Fábio Joel Kochem Mallmann ◽  
Carlos Augusto Bonini Pires ◽  
Henrique Debiasi ◽  
...  

2017 ◽  
Vol 68 (10) ◽  
pp. 2243-2247 ◽  
Author(s):  
Alina Dora Samuel ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Ciprian Iovan ◽  
Lavinia Purza ◽  
...  

Soil enzymes activities have been considered as sensitive indicators of alteration soil quality by management. In order to obtain new data on the soil enzymological effects of soil management practices, we have determined some enzymatic activities in a preluvosoil submitted to a complex tillage and crop rotation experiment at the Agricultural Research and Development Station in Oradea (Bihor County). Actual and potential dehydrogenase, acid phosphatase and catalase activities were investigated in a split plot experiment where tillage (no-till and conventional tillage) was the main plot and crop rotation (Wheat/Maize, W/M; Soybean/Maize, S/M; Oats-Clover/maize, O-C/M) was the subplot. Soil samples were taken at 0-20, 20-40 and 40-60 cm. Each activity in both non-tilled and conventionally tilled soil under maize crop decreased with increasing sampling depth. It was found that no-till, in comparison with conventional tillage, resulted in insignificantly higher (p]0.10) soil enzymatic activities in the 0-20 cm layer and insignificantly (at least at p]0.10) lower activities in the deeper layers, excepting actual and potential dehydrogenase activities in the 40-60 cm layer, in which these activities were significantly lower(0.02]p]0.01). Based on the absolute values of the enzymatic activities, the enzymatic indicator of soil quality (EISQ) was calculated. The EISQ values ranged between 0.201 and 0.974 indicating the presence of high enzymatic activities in the upper layer and a moderate intensity of the enzymatic activities in the deeper layers. A significant correlation between soil enzyme activities and physical and chemical indicators was established.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 793 ◽  
Author(s):  
Teklu Erkossa ◽  
Karl Stahr ◽  
Thomas Gaiser

The study was conducted at Caffee Doonsa (08°88′N, 39°08′E; 2400 m asl), a small watershed in the central highlands of Ethiopia, in order to identify farmers’ goals of soil management and the indicators they use in selecting soils for a certain function, and to categorise the soils in different quality groups with respect to the major functions. Thirty-six male farmers of different age and wealth groups participated in a Participatory Rural Appraisal technique. They listed and prioritised 12 soil functions in the area and itemised the soil quality indicators (characteristics). Based on the indicators, the soils in the watershed were classified into 3 soil quality (SQ) groups (Abolse, Kooticha, and Carii). The SQ groups have been evaluated and ranked for the major soil functions. For crop production, Abolse was graded best, followed by Kooticha and Carii, respectively. The grain and straw yield data of wheat (Triticum aestivum L.) taken from the SQ groups confirmed the farmers claim, in that Abolse gave the highest grain yield (4573 kg/ha), followed by 4411 and 3657 kg/ha for Kooticha and Carii, respectively. Local insights should be included in systematic soil quality assessment, and in planning and implementation of various soil management interventions.


2011 ◽  
Vol 35 (6) ◽  
pp. 1927-1937 ◽  
Author(s):  
Juliano Carlos Calonego ◽  
Ciro Antonio Rosolem

Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.


2016 ◽  
Vol 80 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Maurício R. Cherubin ◽  
Douglas L. Karlen ◽  
André L.C. Franco ◽  
Carlos E. P. Cerri ◽  
Cássio A. Tormena ◽  
...  

2014 ◽  
pp. 140505045536003
Author(s):  
Laura L. Van Eerd ◽  
Katelyn A. Congreves ◽  
Anne Verhallen ◽  
Adam Hayes ◽  
David C. Hooker

2012 ◽  
Vol 36 (4) ◽  
pp. 1299-1310 ◽  
Author(s):  
Carolina Tirloni ◽  
Antonio Carlos Tadeu Vitorino ◽  
Anderson Cristian Bergamin ◽  
Luiz Carlos Ferreira de Souza

Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.


Sign in / Sign up

Export Citation Format

Share Document