Viscoelasticity and shear resistance at the microscale of naturally structured and homogenized subtropical soils under undefined and defined normal stress conditions

2019 ◽  
Vol 191 ◽  
pp. 282-293 ◽  
Author(s):  
Dörthe Holthusen ◽  
Patricia Pértile ◽  
José Miguel Reichert ◽  
Rainer Horn
2018 ◽  
Vol 12 (10) ◽  
pp. 3333-3353 ◽  
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Tanja Schröder ◽  
Michael Krautblatter

Abstract. Instability and failure of high mountain rock slopes have significantly increased since the 1990s coincident with climatic warming and are expected to rise further. Most of the observed failures in permafrost-affected rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. The failure of ice-filled rock joints has only been observed in a small number of experiments, often using concrete as a rock analogue. Here, we present a systematic study of the brittle shear failure of ice and rock–ice interfaces, simulating the accelerating phase of rock slope failure. For this, we performed 141 shearing experiments with rock–ice–rock “sandwich”' samples at constant strain rates (10−3 s−1) provoking ice fracturing, under normal stress conditions ranging from 100 to 800 kPa, representing 4–30 m of rock overburden, and at temperatures from −10 to −0.5 ∘C, typical for recent observed rock slope failures in alpine permafrost. To create close to natural but reproducible conditions, limestone sample surfaces were ground to international rock mechanical standard roughness. Acoustic emission (AE) was successfully applied to describe the fracturing behaviour, anticipating rock–ice failure as all failures are predated by an AE hit increase with peaks immediately prior to failure. We demonstrate that both the warming and unloading (i.e. reduced overburden) of ice-filled rock joints lead to a significant drop in shear resistance. With a temperature increase from −10 to −0.5 ∘C, the shear stress at failure reduces by 64 %–78 % for normal stresses of 100–400 kPa. At a given temperature, the shear resistance of rock–ice interfaces decreases with decreasing normal stress. This can lead to a self-enforced rock slope failure propagation: as soon as a first slab has detached, further slabs become unstable through progressive thermal propagation and possibly even faster by unloading. Here, we introduce a new Mohr–Coulomb failure criterion for ice-filled rock joints that is valid for joint surfaces, which we assume similar for all rock types, and which applies to temperatures from −8 to −0.5 ∘C and normal stresses from 100 to 400 kPa. It contains temperature-dependent friction and cohesion, which decrease by 12 % ∘C−1 and 10 % ∘C−1 respectively due to warming and it applies to temperature and stress conditions of more than 90 % of the recently documented accelerating failure phases in permafrost rock walls.


2003 ◽  
Vol 476 ◽  
pp. 69-103 ◽  
Author(s):  
MEHEBOOB ALAM ◽  
STEFAN LUDING

The bulk rheology of bidisperse mixtures of granular materials is examined under homogeneous shear flow conditions using the event-driven simulation method. The granular material is modelled as a system of smooth inelastic disks, interacting via the hard-core potential. In order to understand the effect of size and mass disparities, two cases were examined separately, namely, a mixture of different sized particles with particles having either the same mass or the same material density. The relevant macroscopic quantities are the pressure, the shear viscosity, the granular energy (fluctuating kinetic energy) and the first normal stress difference.Numerical results for pressure, viscosity and granular energy are compared with a kinetic-theory constitutive model with excellent agreement in the low dissipation limit even at large size disparities. Systematic quantitative deviations occur for stronger dissipations. Mixtures with equal-mass particles show a stronger shear resistance than an equivalent monodisperse system; in contrast, however, mixtures with equal-density particles show a reduced shear resistance. The granular energies of the two species are unequal, implying that the equi-partition principle assumed in most of the constitutive models does not hold. Inelasticity is responsible for the onset of energy non-equipartition, but mass disparity significantly enhances its magnitude. This lack of energy equipartition can lead to interesting non-monotonic variations of the pressure, viscosity and granular energy with the mass ratio if the size ratio is held fixed, while the model predictions (with the equipartition assumption) suggest a monotonic behaviour in the same limit. In general, the granular fluid is non-Newtonian with a measurable first normal stress difference (which is positive if the stress is defined in the compressive sense), and the effect of bidispersity is to increase the normal stress difference, thus enhancing the non-Newtonian character of the fluid.


2019 ◽  
Vol 92 ◽  
pp. 13014
Author(s):  
Matthieu Briffaut ◽  
Bassel El Merabi ◽  
Frédéric Dufour ◽  
Grégory Coubard

The shear behaviour of bonded concrete-granite joints under constant normal stress conditions is experimentally investigated in this paper. Concrete was prepared following standard mix used in pre-existing dams in France and poured on granite samples with a natural surface roughness. Before the direct shear tests, the joint surfaces were scanned by a laser profilometer to obtain the 3D morphology features. By analysing the shear test results, no direct correlations were found between the shear strength of bonded joints and classical roughness parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hang Lin ◽  
Hu Wang ◽  
Yifan Chen ◽  
Rihong Cao ◽  
Yixian Wang ◽  
...  

Many factors influence the shear resistance of rock joints. Among them, the above overburden load is the most important factor. The uneven thickness of the overburden causes the joints to be subjected to the nonuniform distribution load. While the peak shear strength shows nonlinear relationship with normal stress, linear superposition cannot be used to calculate the overall shear resistance of joint under nonuniform normal stress distribution. In this paper, the nonlinear shear strength model, JRC-JCS model, is applied to study the overall shear resistance of the joint under four nonuniform distribution patterns of normal stress. The results show that when the normal stress is distributed in a nonuniform way, the shear resistance provided by rock joint as a whole decreases with the increase of the normal stress distribution interval. Given the nonuniform distribution of normal stress along the joint, the shear resistance obtained by the Mohr-Coulomb linear model is overestimated. In order to give full play to the overall shear performance of the joint, the shear strength at different positions on the joint should be as close as possible. Then, the shear strength of joint parts can enter peak state condition simultaneously, at which time the shear strength is fully exerted.


Sign in / Sign up

Export Citation Format

Share Document