scholarly journals Cropping system partially offsets tillage-related degradation of soil organic carbon and aggregate properties in a 30-yr rainfed agroecosystem

2021 ◽  
Vol 209 ◽  
pp. 104968
Author(s):  
Virginia L. Jin ◽  
Brian J. Wienhold ◽  
Maysoon M. Mikha ◽  
Marty R. Schmer
2020 ◽  
Vol 12 (22) ◽  
pp. 9782
Author(s):  
Mashapa Elvis Malobane ◽  
Adornis Dakarai Nciizah ◽  
Fhatuwani Nixwell Mudau ◽  
Isaiah Iguna Chabaari Wakindiki

Labile organic carbon (LOC) fractions are considered as sensitive indicators of change in soil quality and can serve as proxies for soil organic carbon (SOC). Although the impact of tillage, crop rotation and crop residue management on soil quality is well known, less is known about LOC and SOC dynamics in the sweet sorghum production systems in South Africa. This short-term study tested two tillage levels: no-till and conventional-tillage, two crop rotations: sweet-sorghum/winter grazing vetch/sweet sorghum and sweet-sorghum/winter fallow/sweet sorghum rotations and three crop residue retention levels: 30%, 15% and 0%. Tillage was the main factor to influence SOC and LOC fractions under the sweet sorghum cropping system in South Africa. NT increased SOC and all LOC fractions compared to CT, which concurs with previous findings. Cold water extractable organic carbon (CWEOC) and hot water extractable organic carbon (HWEOC) were found to be more sensitive to tillage and strongly positively correlated to SOC. An increase in residue retention led to an increase in microbial biomass carbon (MBC). This study concludes that CWEOC and HWEOC can serve as sensitive early indicators of change in soil quality and are an ideal proxy for SOC in the sweet-sorghum cropping system in South Africa.


2018 ◽  
Vol 64 (No. 11) ◽  
pp. 557-563 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Yingxue Li ◽  
Xin Zhong

Monoculture is common to meet commodity grain requirements in Northeast China. The effect of long-term monoculture on chemical composition of soil organic carbon (SOC) remains unclear. This study was done to evaluate how changes in chemical compositions of SOC responded to long-term monoculture. To achieve this objective, the chemical compositions of SOC in maize-soybean rotation, continuous soybean and continuous maize were characterized with the nuclear magnetic resonance technique. Two main components, O-alkyl and aromatic C, showed a wider range of relative proportion in monoculture than rotation system across soil profiles, but no difference was observed between two monoculture systems. Pearson’s analysis showed a significant relationship between plant-C and OCH<sub>3</sub>/NCH, alkyl C or alkyl O-C-O, and the A/O-A was closely related to plant-C. The findings indicated a greater influence of monoculture on the chemical composition of SOC compared to rotation, but lower response to crop species.


2015 ◽  
Vol 153 ◽  
pp. 161-168 ◽  
Author(s):  
Jian-Fu Xue ◽  
Chao Pu ◽  
Sheng-Li Liu ◽  
Zhong-Du Chen ◽  
Fu Chen ◽  
...  

Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 24
Author(s):  
Yui Osanai ◽  
Oliver Knox ◽  
Gunasekhar Nachimuthu ◽  
Brian Wilson

Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

2014 ◽  
Vol 6 (5) ◽  
Author(s):  
Patrick Musinguzi ◽  
Peter Ebanyat ◽  
John Stephen Tenywa ◽  
Majaliwa Mwanjalolo ◽  
Twaha Ali Basamba ◽  
...  

Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 463 ◽  
Author(s):  
Zhongkui Luo ◽  
Enli Wang ◽  
Jeff Baldock ◽  
Hongtao Xing

The diversity of cropping systems and its variation could lead to great uncertainty in the estimation of soil organic carbon (SOC) stock across time and space. Using the pre-validated Agricultural Production Systems Simulator, we simulated the long-term (1022 years) SOC dynamics in the top 0.3 m of soil at 613 reference sites under 59 representative cropping systems across Australia’s cereal-growing regions. The point simulation results were upscaled to the entire cereal-growing region using a Monte Carlo approach to quantify the spatial pattern of SOC stock and its uncertainty caused by cropping system and environment. The predicted potential SOC stocks at equilibrium state ranged from 10 to 140 t ha–1, with the majority in a range 30–70 t ha–1, averaged across all the representative cropping systems. Cropping system accounted for ~10% of the total variance in predicted SOC stocks. The type of cropping system that determined the carbon input into soil had significant effects on SOC sequestration potential. On average, the potential SOC stock in the top 0.3 m of soil was 30, 50 and 60 t ha–1 under low-, medium- and high-input cropping systems in terms of carbon input, corresponding to –2, 18 and 26 t ha–1 of SOC change. Across the entire region, the Monte Carlo simulations showed that the potential SOC stock was 51 t ha–1, with a 95% confidence interval ranging from 38 to 64 t ha–1 under the identified representative cropping systems. Overall, predicted SOC stock could increase by 0.99 Pg in Australian cropland under the identified representative cropping systems with optimal management. Uncertainty varied depending on cropping system, climate and soil conditions. Detailed information on cropping system and soil and climate characteristics is needed to obtain reliable estimates of potential SOC stock at regional scale, particularly in cooler and/or wetter regions.


Sign in / Sign up

Export Citation Format

Share Document