aggregate properties
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 313 ◽  
pp. 125486
Author(s):  
Elías Roces ◽  
Mauro Muñiz-Menéndez ◽  
Jesús González-Galindo ◽  
José Estaire

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7303
Author(s):  
Zhibing Xing ◽  
Fenglan Han ◽  
Jiuliang Tian ◽  
Zhichao Xu ◽  
Jiaqi Wang ◽  
...  

A large number of natural aggregates are used in the field of construction materials, resulting in the exhaustion of natural aggregates. Therefore, looking for an alternative will slow down the consumption of natural aggregates. The sintering method not only consumes a lot of energy to prepare aggregates but also produces a lot of pollutants. In this study, silico-manganese (SM) slag was dried, ground into powder, and used as raw material. Solid and liquid alkaline activator methods were used to prepare SM slag non-burning aggregate (SMNA) by the cold bonding method. The effects of grinding time, amounts of solid and liquid alkaline activators, curing temperature, and the amount of added fly ash on aggregate properties were investigated. The aggregate microstructure was characterized by XRD, SEM, and FTIR methods, and the toxic leaching analysis of aggregate was performed. The results showed that with a fixed amount of liquid activator (16.2% wt.) and solid activator (15% wt.) and fly ash (20% wt.), respectively, and curing was performed at room temperature, the aggregate properties were optimal: the bulk density of 1236.6–1476.9 kg/m3 and the water absorption lower than 4.9–5.5%. The apparent density was 1973.1–2281.6 kg/m3, and the bulk crushing strength was 24.7–27.9 MPa. The XRD, SEM, and FTIR results indicated that amorphous gel could be formed from SM under an alkaline activator, improving the aggregate strength. The results of toxic leaching showed that the aggregate prepared from SM exhibited environmentally friendly characteristics. The SMNA was obtained via the simple and low-energy consumption production process, paving the new way toward large-scale utilization of SM.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bradbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bardbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


2021 ◽  
Vol 376 (1835) ◽  
pp. 20200343 ◽  
Author(s):  
Shyamolina Ghosh ◽  
Kathryn L. Cottingham ◽  
Daniel C. Reuman

Synchrony among population fluctuations of multiple coexisting species has a major impact on community stability, i.e. on the relative temporal constancy of aggregate properties such as total community biomass. However, synchrony and its impacts are usually measured using covariance methods, which do not account for whether species abundances may be more correlated when species are relatively common than when they are scarce, or vice versa. Recent work showed that species commonly exhibit such ‘asymmetric tail associations’. We here consider the influence of asymmetric tail associations on community stability. We develop a ‘skewness ratio’ which quantifies how much species relationships and tail associations modify stability. The skewness ratio complements the classic variance ratio and related metrics. Using multi-decadal grassland datasets, we show that accounting for tail associations gives new viewpoints on synchrony and stability; e.g. species associations can alter community stability differentially for community crashes or explosions to high values, a fact not previously detectable. Species associations can mitigate explosions of community abundance to high values, increasing one aspect of stability, while simultaneously exacerbating crashes to low values, decreasing another aspect of stability; or vice versa. Our work initiates a new, more flexible paradigm for exploring species relationships and community stability. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


2021 ◽  
Vol 292 ◽  
pp. 123467
Author(s):  
You Zhan ◽  
Joshua Qiang Li ◽  
Cheng Liu ◽  
Kelvin C.P. Wang ◽  
Dominique M. Pittenger ◽  
...  

2021 ◽  
Vol 1075 (1) ◽  
pp. 012033
Author(s):  
Gailan Ismat Safa Eldeen ◽  
Fauzan Mohd Jakarni ◽  
Alyaa A. Al-Attar ◽  
Ratnasamy Muniandy ◽  
Salihudin Hassim

Sign in / Sign up

Export Citation Format

Share Document