The short-term impacts of soil disturbance on soil microbial community in a degraded Leymus chinensis steppe, North China

2021 ◽  
Vol 213 ◽  
pp. 105112
Author(s):  
Lingling Chen ◽  
Hongbin Xu ◽  
Jiahui Sun ◽  
Taogetao Baoyin
Agriculture ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 216 ◽  
Author(s):  
Li ◽  
Ma ◽  
Yang ◽  
Hou ◽  
Liu ◽  
...  

Land consolidation of dryland-to-paddy conversion for improving tillage conditions and grain production capacity is widely implemented throughout the world. The conversion affects soil ecological stability, especially the most active soil microorganisms. However, the impacts of the dryland-to-paddy conversion has paid little attention in recent decades. In this study, a pot experiment was used to explore the responses of the microbial community and their interactions with soil properties after rice in the first season (five months). The results indicated that a significant decrease in the topsoil pH, organic matter content, nitrate nitrogen, and ammonical nitrogen, and an increase in soil electrical conductivity (EC) was observed (p < 0.05) after the dryland-to-paddy conversion. The richness and diversity of bacteria and fungi decreased in the short term. The composition of the soil microbial community and the soil microbial dominant bacteria had considerably changed after the conversion. Actinobacteria, Firmicutes, and Olpidiomycota were found to be highly sensitive to the dryland-to-paddy conversion. The soil microbial community structure had extremely significant positive correlations with soil pH, EC, organic matter, nitrate nitrogen, and ammonical nitrogen (p < 0.05). Microorganisms are the most important component of soil nutrient cycling. Converting a large area of dryland to paddy may lead to an imbalance in the soil carbonitride cycle and should be further examined in North China.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 561
Author(s):  
Enze Wang ◽  
Xiaolong Lin ◽  
Lei Tian ◽  
Xinguang Wang ◽  
Li Ji ◽  
...  

Rice straw is a byproduct of agricultural production and an important agricultural resource. However, rice straw has not yet been effectively used, and incorrect treatment methods (such as burning in the field) can cause serious damage to the environment. Studies have shown that straw returning is beneficial to soil, but there have been few studies focused on the effect of the amount of short-term straw returned on the soil microbial community. This study evaluates 0%, 50%, 75%, and 100% rice straw returned to the field on whether returning different amounts of straw in the short term would affect the diversity and composition of the soil microbial community and the correlation between bacteria and fungi. The results show that the amount of straw returned to the field is the main factor that triggers the changes in the abundance and composition of the microbial community in the paddy soil. A small amount of added straw (≤ 50% straw added) mainly affects the composition of the bacterial community, while a larger amount of added straw (> 50% straw added) mainly affects the composition of the fungal community. Returning a large amount of straw increases the microbial abundance related to carbon and iron cycles in the paddy soil, thus promoting the carbon and iron cycle processes to a certain extent. In addition, network analysis shows that returning a large amount of straw also increases the complexity of the microbial network, which may encourage more microbes to be niche-sharing and comprehensively improve the ecological environment of paddy soil. This study may provide some useful guidance for rice straw returning in northeast China.


2017 ◽  
Vol 7 (3) ◽  
pp. 184-190
Author(s):  
A. A. Danilova ◽  
G. N. Savvinov ◽  
L. D. Gavril’eva ◽  
P. P. Danilov ◽  
M. I. Ksenofontova ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Pan Wan ◽  
Gongqiao Zhang ◽  
Zhonghua Zhao ◽  
Yanbo Hu ◽  
Wenzhen Liu ◽  
...  

One of the aims of sustainable forest management is to preserve the diversity and resilience of ecosystems. Unfortunately, changes in the soil microbial communities after forest management remain unclear. We analyzed and compared the soil microbial community of a natural Quercus aliena var. acuteserrata forest after four years of four different management methods using high-throughput sequencing technology. The forest management methods were close-to-nature management (CNFM), structure-based forest management (SBFM), secondary forest comprehensive silviculture (SFCS) and unmanaged control (CK). The results showed that: (1) the soil microbial community diversity indices were not significantly different among the different management methods. (2) The relative abundance of Proteobacteria in the SBFM treatment was lower than in the CK treatment, while the relative abundance of Acidobacteria in the SBFM was significantly higher than that in the CK treatment. The relative abundance of Ascomycota was highest in the CNFM treatment, and that of Basidiomycota was lowest in the CNFM treatment. However, the relative abundance of dominant bacterial and fungal phyla was not significantly different in CK and SFCS. (3) Redundancy analysis (RDA) showed that the soil organic matter (SOM), total nitrogen (TN), and available nitrogen (AN) significantly correlated with the bacterial communities, and the available potassium (AK) was the only soil nutrient, which significantly correlated with the composition of the fungal communities. The short-term SBFM treatment altered microbial bacterial community compositions, which may be attributed to the phyla present (e.g., Proteobacteria and Acidobacteria), and the short-term CNFM treatment altered microbial fungal community compositions, which may be attributed to the phyla present (e.g., Ascomycota and Basidiomycota). Furthermore, soil nutrients could affect the dominant soil microbial communities, and its influence was greater on the bacterial community than on the fungal community.


2007 ◽  
Vol 36 (2-3) ◽  
pp. 216-223 ◽  
Author(s):  
Beligh Mechri ◽  
Adel Echbili ◽  
Manel Issaoui ◽  
Mohamed Braham ◽  
Salem Ben Elhadj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document