scholarly journals Structural Basis for the Interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6

Structure ◽  
2013 ◽  
Vol 21 (9) ◽  
pp. 1698-1706 ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Christina Schindler ◽  
Adriana L. Rojas ◽  
Juan S. Bonifacino ◽  
Aitor Hierro
2007 ◽  
Vol 15 (1) ◽  
pp. 103-105 ◽  
Author(s):  
Jeffrey A Chao ◽  
Yury Patskovsky ◽  
Steven C Almo ◽  
Robert H Singer

2018 ◽  
Author(s):  
Wouter Van Putte ◽  
Tatjana De Vos ◽  
Wim Van Den Broeck ◽  
Henning Stahlberg ◽  
Misha Kudryashev ◽  
...  

AbstractThe type II secretion system (T2SS), a protein complex spanning the bacterial envelope, is pivotal to bacterial pathogenicity. Central to T2SS function is the extrusion of protein cargos from the periplasm into the extracellular environment mediated by a pseudopilus and motorized by a cytosolic ATPase. GspF, an inner-membrane component of T2SS has long been considered to be a key player in this process, yet the structural basis of its role had remained elusive. Here, we employed single-particle electron microscopy based on XcpS (GspF) from the T2SS of pathogenicP. aeruginosastabilized by a nanobody, to show that XcpS adopts a dimeric structure mediated by its transmembrane helices. This assembly matches in terms of overall organization and dimensions the basal inner-membrane cassette of a T2SS machinery. Thus, GspF is poised to serve as an adaptor involved in the mediation of propeller-like torque generated by the motor ATPase to the secretion pseudopilus.Non-technical author summaryAntibiotic resistance by bacteria imposes a worldwide threat that can only be overcome through a multi-front approach: preventive actions and the parallel development of novel molecular strategies to combat antibiotic resistance mechanisms. One such strategy might focus on antivirulence drugs that prevent host invasion and spreading by pathogenic bacteria, without shutting down essential functions related to bacterial survival. The rationale behind such an approach is that it might limit selective pressure leading to slower evolutionary rates of resistant bacterial strains. Bacterial secretion systems are an appropriate target for such therapeutic approaches as their impairment will inhibit the secretion of a multitude of virulence factors. This study focuses on the structural characterization of one of the proteins residing in the inner-membrane cassette of the type II secretion system (T2SS), a multi-protein complex in multiple opportunistic pathogens that secretes virulence factors. The targeted protein is essential for the assembly of the pseudopilus, a rod-like supramolecular structure that propels the secretion of virulence factors by pathogenic Gram-negative bacteria. Our study crucially complements growing evidence supporting a rotational assembly model of the pseudopilus and contributes to a better understanding of the functioning of the T2SS and the related secretion systems. We envisage that such knowledge will facilitate targeting of these systems for therapeutic purposes.


Science ◽  
2020 ◽  
pp. eabb5008 ◽  
Author(s):  
Tino Pleiner ◽  
Giovani Pinton Tomaleri ◽  
Kurt Januszyk ◽  
Alison J. Inglis ◽  
Masami Hazu ◽  
...  

A defining step in the biogenesis of a membrane protein is the insertion of its hydrophobic transmembrane helices into the lipid bilayer. The nine-subunit ER membrane protein complex (EMC) is a conserved co- and post-translational insertase at the endoplasmic reticulum. We determined the structure of the human EMC in a lipid nanodisc to an overall resolution of 3.4 Å by cryo-electron microscopy, permitting building of a nearly complete atomic model. We used structure-guided mutagenesis to demonstrate that substrate insertion requires a methionine-rich cytosolic loop and occurs via an enclosed hydrophilic vestibule within the membrane formed by the subunits EMC3 and EMC6. We propose that the EMC uses local membrane thinning and a positively charged patch to decrease the energetic barrier for insertion into the bilayer.


2020 ◽  
Author(s):  
Gerhard Wagner ◽  
Meng Zhang ◽  
Miao Gui ◽  
Zi-Fu Wang ◽  
Christoph Gorgulla ◽  
...  

Abstract G protein coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, structural studies of the complex in a physiological lipid membrane environment are lacking. Here, we report cryo-EM structures of lipid bilayer-bound complexes of neurotensin, neurotensin receptor 1, and Gai1b1g1 protein in two conformational states, resolved to 4.1 and 4.2 Å resolution. The structures were determined in lipid bilayer without any stabilizing antibodies/nanobodies, and thus provide a native-like platform for understanding the structural basis of GPCR-G protein complex formation. Our structures reveal an extended network of protein-protein interactions at the GPCR-G protein interface compared to in detergent micelles, defining roles for the lipid membrane in modulating the structure and dynamics of complex formation, and providing a molecular explanation for the stronger interaction between GPCR and G protein in lipid bilayers. We propose a detailed allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


2002 ◽  
Vol 9 (12) ◽  
pp. 912-917 ◽  
Author(s):  
Guillermo Calero ◽  
Kristin F. Wilson ◽  
Thi Ly ◽  
Jorge L. Rios-Steiner ◽  
Jon C. Clardy ◽  
...  

Physiology ◽  
2012 ◽  
Vol 27 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Lifeng Pan ◽  
Mingjie Zhang

Usher syndrome 1 (USH1) is the most common and severe form of hereditary loss of hearing and vision. Genetic, physiological, and cell biological studies, together with recent structural investigations, have not only uncovered the physiological functions of the five USH1 proteins but also provided mechanistic explanations for the hearing and visual deficiencies in humans caused by USH1 mutations. This review focuses on the structural basis of the USH1 protein complex organization.


Sign in / Sign up

Export Citation Format

Share Document