Calibration of the design wind load and snow load considering the historical climate statistics and climate change effects

2021 ◽  
Vol 93 ◽  
pp. 102135
Author(s):  
H.P. Hong ◽  
Q. Tang ◽  
S.C. Yang ◽  
X.Z. Cui ◽  
A.J. Cannon ◽  
...  
2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2012 ◽  
Author(s):  
Ronald Filadelfo ◽  
Jonathon Mintz ◽  
Daniel Carvell ◽  
Alan Marcus

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1091
Author(s):  
Vanessa Mendoza-Grimón ◽  
Regla Amorós ◽  
Juan Ramón Fernández-Vera ◽  
Jose Manuel Hernádez-Moreno ◽  
María del Pino Palacios-Díaz

Cape Verde is a semiarid country where lack of rainfall exacerbates the scarce resources available for livestock which, therefore, make it very vulnerable to climate change. By providing reclaimed water (RW) for irrigation, it is possible to decrease forage importation. Subsurface drip irrigation (SDI) improves health security by preventing contact between water and harvested plants. Sorghum is a water-efficient crop that provides good nutritional value. The aim of this experiment was to study the nutrient and fiber contents of the Sorghum Payenne variety using subsurface (T1) and surface (T2) drip irrigation by RW vs. conventional water (T3) and plant maturity to assure the feasibility of water reuse to produce forage. Ntot–Ptot–Ca–Mg and Na were significantly higher in the RW plants than in the conventional water ones. Ntot–Ptot–K and Fe contents significantly lowered, while Ca–Na and Mn significantly rose as plant maturity increased. All the fiber values meet the Nos. 2 and 3 quality standards, and the Prime and No. 1 for NDF and ADF, respectively. The obtained good forage quality let to avoid the competence of conventional water and to reuse nutrients added by RW. If generalized, this solution would reduce forage importation by improving food sovereignty and farmers’ profitability, and would enhance resilience against climate change effects.


Sign in / Sign up

Export Citation Format

Share Document