scholarly journals One pot kinetic resolution and product separation with corn germ oil and supercritical carbon dioxide

2018 ◽  
Vol 141 ◽  
pp. 218-223 ◽  
Author(s):  
Ildikó Kmecz ◽  
Zsófia Varga ◽  
Edit Székely
2004 ◽  
pp. 2286 ◽  
Author(s):  
Tomoko Matsuda ◽  
Kazunori Watanabe ◽  
Tadao Harada ◽  
Kaoru Nakamura ◽  
Yoshitaka Arita ◽  
...  

2009 ◽  
Vol 11 (4) ◽  
pp. 538 ◽  
Author(s):  
Pedro Lozano ◽  
Teresa De Diego ◽  
Corina Mira ◽  
Kimberley Montague ◽  
Michel Vaultier ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chikara Tsutsumi ◽  
Souta Manabe ◽  
Susumu Nakayama ◽  
Yuushou Nakayama ◽  
Takeshi Shiono

Abstract This work studied the incorporation of essential bark oil from Thujopsis dolabrata var. hondae, which is known to repel various insects, in poly(L-lactide-ran-δ-valerolactone) [poly(L-LA-ran-VL)] using supercritical carbon dioxide (scCO2). The poly(L-LA-ran-VL) was synthesized by first purifying the monomers by azeotropic distillation with benzene, followed by polymerization with Sn(oct)2 using the same equipment, representing an efficient one-pot process. The copolymerization of L-LA with VL using this technique at a feed ratio of 90/10 mol/mol gave poly(L-LA-ran-VL) (91/9) with a molecular weight of 6.48 × 104 g/mol and a high yield of 74.9%. Products with molecular weights over 5.0 × 104 g/mol were obtained at L-LA feed proportions of 70 to 90%. Impregnation trials were conducted between 40 and 120 °C at 14 MPa for 3 h. The oil content of a 73/27 specimen was found to increase significantly during processing at 100 or 120 °C. During enzymatic degradation with proteinase K, the 91/9 specimen showed the fastest degradation rate. Although the 71/29 sample was slowly hydrolyzed in a phosphate buffer at pH 7.0, the release of oil vapor from this material was slightly higher than that from the 91/9 specimen, and the vapor release rate continuously increased throughout the hydrolysis process.


ChemInform ◽  
2005 ◽  
Vol 36 (12) ◽  
Author(s):  
Tomoko Matsuda ◽  
Kazunori Watanabe ◽  
Tadao Harada ◽  
Kaoru Nakamura ◽  
Yoshitaka Arita ◽  
...  

Langmuir ◽  
2010 ◽  
Vol 26 (4) ◽  
pp. 2707-2713 ◽  
Author(s):  
Muhammad B. I. Chowdhury ◽  
Rouhong Sui ◽  
Rahima A. Lucky ◽  
Paul A. Charpentier

Author(s):  
Pedro Lozano ◽  
Teresa De Diego ◽  
Michel Vaultier ◽  
Jose L Iborra

Supercritical fluids and ionic liquids are neoteric solvents that can be used as non-conventional reaction media for enzymatic catalysis under optimised conditions. These solvents exhibit many different physical and chemical properties, but have two cross-points: they are not-miscible and can be easily separated from substrates and products, and they can be reused. As supercritical carbon dioxide (scCO2) can dissolve in the ionic liquid (IL) phase (up to 0.7 mole fraction), a new concept of biphasic bioreactors for Fine Chemicals syntheses may be developed by using both enzyme and chemical catalysts "immobilized" into the IL phase, and substrates transported by the scCO2 phase. The system was tested for the continuous chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenylethanol in IL/scCO2 by using simultaneously immobilized lipase (Novozym 435) and acid zeolites catalysts at 50°C and 100 bars, providing good yields (up 98.0 %) for R-phenylethyl propionate ester with excellent enantioselectivity (up to 97.3 %), and without any activity loss after 14 days of operation.


e-Polymers ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 245-254 ◽  
Author(s):  
Wei Wang ◽  
Liqin Cao ◽  
Jide Wang ◽  
Jie Zhao ◽  
Xiujuan Wu ◽  
...  

AbstractPoly(1-vinylimidazole) (PVIm)/silica nanocomposite particles were prepared via free radical polymerization of VIm in the presence of unmodified silica and crosslinker N,N′-methylenebisacrylamide without any surfactant by a one-pot route in supercritical carbon dioxide. The strong acid-base interaction between the hydroxyl groups (acidic) of silica surfaces and the imidazole groups (basic) of 1-VIm was strong enough to promote the formation of long-stable PVIm/silica nanocomposite particles. Transmission electron microscopy and scanning electron microscopy results showed that the silica nanoparticles were encapsulated into the polymer and with a specific pore structure. Fourier transform infrared spectroscopy results suggested the strong interaction between PVIm and silica. The nanocomposites were shown to possess higher thermal stability than PVIm. A maximum surface area of 60.76 m2/g was obtained via standard nitrogen adsorption analysis. The property of the composite materials in terms of heavy metal ion removal was investigated. The maximum adsorption capacity of Cr (VI) is 331.5 mg/g in the experimental range.


Sign in / Sign up

Export Citation Format

Share Document