Effect of the crystallization of modified polybutylene terephthalate on its foaming using supercritical CO2: Transition from microcellular to nanocellular foam

Author(s):  
Yaqiao Wang ◽  
Shihong Chen ◽  
Jianguo Mi ◽  
Zhongjie Du ◽  
Xiangdong Wang ◽  
...  
2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
YH Tsai ◽  
TJ Hsieh ◽  
MC Liao ◽  
PJ Lien ◽  
CC Sun ◽  
...  

2015 ◽  
Vol 57 (5) ◽  
pp. 458-461
Author(s):  
Aylin Bekem ◽  
Ahmet Unal

2019 ◽  
Author(s):  
Mohammad Nooraiepour ◽  
Magnus Soldal ◽  
Joonsang Park ◽  
Nazmul Haque Mondal ◽  
Helge Hellevang ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 314-325
Author(s):  
Barla Karuna Devi ◽  
Swathi Naraparaju ◽  
Chaganti Soujanya ◽  
Sayan Dutta Gupta

: Green chemistry emphasizes designing novel routes to overcome health and environmental problems that occur during a chemical reaction. Green solvents are used in place of conventional solvents that are hazardous to both human and the environment. Solvents like water, ionic liquids, supercritical CO2, biosolvents, organic carbonates, and deep eutectic mixtures can be used as green solvents. The review focuses on the properties, applications, and limitations of these solvents.


Sign in / Sign up

Export Citation Format

Share Document