Chemical kinetics simulations of an atmospheric pressure plasma device in air

2005 ◽  
Vol 200 (1-4) ◽  
pp. 924-927 ◽  
Author(s):  
R. Barni ◽  
P. Esena ◽  
C. Riccardi
2018 ◽  
Vol 13 (3) ◽  
pp. 155892501801300
Author(s):  
Carrie Cornelius ◽  
Marian McCord ◽  
Mohamed Bourham ◽  
Peter Hauser

Nonwoven polypropylene and cotton fabrics are grafted to a vinyl quaternary compound using atmospheric-pressure plasma. Two different atmospheric plasma devices are used -the NCAPS (North Carolina Atmospheric Plasma System), a dielectric barrier discharge device created by North Carolina State University, and a plasma device from APJeT® Inc. The addition of additives such as Mohr's salt, potassium persulfate, and diacrylates are assessed to see if graft yield can be increased. Acid dye tests, SEM, and XPS reveal successful grafting of the vinyl quaternary compound. A combination of all four additives is found to yield the highest graft yields and greatest uniformity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samed Ayhan Özsoy ◽  
Safiye Meriç Acıkel ◽  
Cem Aydemir

Purpose The surface energy of the printing material can be increased to desired levels with different chemicals or methods. However, the important thing is that the surface properties of printing material are not affected negatively. In this way the aim of this paper provide that the surface properties of matte and glossy coated paper is improved by the argon containing atmospheric pressure plasma device because the plasma treatment method does not occur surface damaging on the papers. Design/methodology/approach In experimental studies, test samples cut from 160 mm × 30 mm in size from 115 g/m2 gloss- and matt-coated papers were used. The plasma treatments of paper samples were carried out with an argon containing atmospheric pressure plasma device of laboratory scale that produces plasma of the corona discharge type at radio frequency. The optimized plasma parameters were at a frequency of 20 kHz and plasma power 200 W. A copper electrode of length 12 cm and diameter 2.5 mm was placed in the centre of the nozzle. Findings Research findings showed that the surface energies of the papers increased with the increase in plasma application time. While the contact angle of the untreated glossy paper is 82.2, 8 second plasma applied G3 sample showed 54 contact angle value. Similarly, the contact angle of the base paper of matt coated is 91.1, while M3 is reduced to 60.4 contact angles by the increasing plasma time. Originality/value Plasma treatment has shown that no chemical coating is needed to increase the wettability of the paper surface by reducing the contact angle between the paper and the water droplet. In addition, the surface energies of all papers treated by argon gas containing atmospheric pressure plasma, increased. Plasma treatment provides to improve both the wettability of the paper and the adhesion property required for the ink, with an environmentally friendly approach.


2011 ◽  
Vol 02 (01) ◽  
pp. 23-27 ◽  
Author(s):  
Zhuwen Zhou ◽  
Yanfen Huang ◽  
Size Yang ◽  
Wei Chen

Sign in / Sign up

Export Citation Format

Share Document