Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel

2020 ◽  
Vol 401 ◽  
pp. 126275 ◽  
Author(s):  
D.A. Lesyk ◽  
B.N. Mordyuk ◽  
S. Martinez ◽  
M.O. Iefimov ◽  
V.V. Dzhemelinskyi ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Jinyi Wu ◽  
Weixiong Zhang ◽  
Ke Chai ◽  
Aimin Yu

2019 ◽  
Vol 31 (3) ◽  
pp. 1091
Author(s):  
Chi-Liang Kung ◽  
Hao-En Shih ◽  
Chao-Ming Hsu ◽  
Cheng-Yi Chen

2020 ◽  
Vol 8 (2) ◽  
pp. 89-95
Author(s):  
Yosyi Mustafa Rachman ◽  
Ahmad Maulana ◽  
Fatimah Dian Ekawati

AISI 1045 steel is a steel classified as medium carbon alloy steel which is widely used as the main material in machinery so it must have good mechanical properties such as hardness, wear resistance. The purpose of this study was to determine the effect of heat treatment on the wear rate of AISI 1045 steel. The research method used was AISI 1045 steel which was given a hardening heat treatment with a temperature variation of 800ºC, 850ºC, 900ºC with a holding time of 60 minutes, followed by rapid cooling using water . after that the specimen will be tested for wear by using a standard Pin On Disc. the results of the study show that the wear value at 800ºC has an average wear value of 15.0762 mg / cm², then at a temperature of 850ºC has an average wear value of 11.33933 mg / cm² and at a temperature of 900ºC has an average wear value of 9 9488 mg / cm². In conclusion, there was a very strong influence on the use of hardening temperature variations on the AISI 1045 steel wear and the smallest wear value on the specimen given by the hardening process at 900ºC with an average wear value of 9.9488 mg / cm².


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Frederico Ozanan Neves ◽  
Thiago Luis Lara Oliviera ◽  
Durval Uchoas Braga ◽  
Alex Sander Chaves da Silva

Residual stresses are those stresses that remain in a body when there is no external load applied. Numerous factors can induce residual stresses in the material, including cold forming. Thermal treatments of steel are widely used because they can improve the mechanical properties of the steel, such as toughness, tenacity, and resistance; however, thermal treatments can also produce residual stresses. This study aims to analyze the residual stresses present in a cold-forged part after heat treatments. Half-cylinder samples of AISI 1045 steel were cold-forged, and a wedge tool was pressed into their surface, causing a strain gradient. The samples were then heat-treated by annealing, normalizing, quenching, or quenching and tempering. A numerical simulation was also performed to aid in choosing the measurement points in the samples. The results show that residual stresses are dependent on the heat treatment and on the intensity and nature of previous residual stresses in the body.


Sign in / Sign up

Export Citation Format

Share Document