Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition

Author(s):  
Kang Qi ◽  
Yong Yang ◽  
Wanxu Liang ◽  
Kang Jin ◽  
Li Xiong
2021 ◽  
Vol 141 ◽  
pp. 107129
Author(s):  
Kang Qi ◽  
Yong Yang ◽  
Rui Sun ◽  
Guofang Hu ◽  
Xin Lu ◽  
...  

1981 ◽  
Vol 13 (11) ◽  
pp. 1393-1396
Author(s):  
T. G. Kovaleva ◽  
A. D. Shevchuk ◽  
P. I. Tereshchenko

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Peng Zhang ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

A magnetorheological fluid (MRF) is one of many smart materials that can be changed their rheological properties. The stiffness and damping characteristics of MRF can be changed when a magnetic field is applied. This technology has been successfully employed in various low and high volume applications, such as dampers, clutches, and active bearings, which are already in the market or are approaching production. As a result, the sealing performance of MRF has become increasingly important. In this study, the wear properties of seals with MRFs were evaluated by a rotary-type lip seal wear tester. The test was performed with and without a magnetic field. The leakage time was monitored during the tests in typical engine oil conditions. The results showed that the wear resistance of the seal with MRF was decreased under the magnetic field.


2021 ◽  
Author(s):  
Linlin ZHANG ◽  
Dawei ZHANG

Ni-Co-W composite coatings modified by different contents of Co-based alloy powder in the Ni-based alloy with 35 wt.% WC (Ni35WC) were deposited on stainless steel by laser cladding. The influence of compositional and microstructural modification on the wear properties has been comparatively investigated by XRD, SEM, and EDS techniques. It was found that the austenite dendrites in the modified coating adding 50 wt.% Co-based alloy were refined and a lot of Cr23C6 or M23(C, B)6 compounds with fine lamellar feature were formed around austenitic grain boundaries or in the intergranular regions. The contribution of element Co to the modification of Ni35WC coating is that it cannot only promote the formation of more hard compounds to refine austenite grains, but also refine the size of precipitates, and change the phase type of eutectic structure as a result of disappeared Cr boride brittle phases. A noticeable improvement in wear resistance is obtained in the Ni35WC coating with 50 wt.% Co-based alloy, which makes the wear rate decreased by about 53 % and 30% by comparison to that of the substrate and the Ni35WC coating, respectively. It is suggested that the improvement is closely related to the composite coating being strengthened owing to the increase of coating hardness, formation of a fine-grained microstructure caused by Co, and fine hard precipitate phases in the eutectic structure.


Author(s):  
Md Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Tae Jo Koa ◽  
Dong-Joo Lee ◽  
...  

ABSTRACT This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.


2019 ◽  
Vol 46 (5) ◽  
pp. 0502001
Author(s):  
陈菊芳 Chen Jufang ◽  
李小平 Li Xiaoping ◽  
薛亚平 Xue Yaping

2011 ◽  
Vol 314-316 ◽  
pp. 143-146
Author(s):  
Xin Feng ◽  
Yan Qiu Xia

AISI 1045 steels were laser-clad with Ni-based powder by CO2 HJ-4 coherent laser. The phase composition of the laser-cladding coating was investigated by means of X-ray diffraction (XRD). The cross-section of the cladding coating was observed using a scanning electron microscopy (SEM). The friction and wear properties of the laser cladding coatings sliding against AISI 52100 steel under the lubrication of liquid paraffin containing various anti-wear and extreme pressure additives were investigated using an Optimol SRV reciprocating motion friction and wear tester. Results showed that the laser-cladding coating considerably decreased coefficient of friction and increased wear resistance in sliding against AISI 52100 steel and attributed to the change in the hardness, phase composition of the laser-cladding coating and tribochemical reactions between the laser-cladding coating and the extreme pressure and anti-wear additives.


Sign in / Sign up

Export Citation Format

Share Document