Electrodeposition and wear behavior of NiCoW ternary alloy coatings reinforced by Al2O3 nanoparticles: Influence of current density and electrolyte composition

Author(s):  
Zhongquan Zhang ◽  
Leyu Dai ◽  
Yibiao Yin ◽  
Zhao Xu ◽  
Yin Lv ◽  
...  
Author(s):  
В.Н. Горяева ◽  
Р.А. Бисенгалиев

The features of electrochemical deposition of metal coatings on hole silicon are presented, and the properties of the obtained metal layers are measured. The dependence of the thickness of the depleted region and the internal voltage drop in it on the composition of the electrolyte and the type of precipitated metal was investigated. The effect of current density and electrolyte composition on the properties of precipitation is proved. By selection of the electrolyte pretreatment and the deposition mode, metal precipitates with acceptable adhesion and low longitudinal resistance were obtained.


Author(s):  
Sajjad Sadeghi ◽  
Hadi Ebrahimifar

Abstract The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.


1987 ◽  
Vol 26 (6) ◽  
pp. 431-433
Author(s):  
A. B. Suchkov ◽  
A. S. Vorob'eva ◽  
V. N. Kryzhova ◽  
L. V. Ryumina ◽  
A. G. Kaganov ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1652
Author(s):  
Víctor Hugo Mercado-Lemus ◽  
Cynthia Daisy Gomez-Esparza ◽  
Juan Carlos Díaz-Guillén ◽  
Jan Mayén-Chaires ◽  
Adriana Gallegos-Melgar ◽  
...  

The present research deals with the comparative wear behavior of a mechanically milled Al-6061 alloy and the same alloy reinforced with 5 wt.% of Al2O3 nanoparticles (Al-6061-Al2O3) under different dry sliding conditions. For this purpose, an aluminum-silicon-based material was synthesized by high-energy mechanical alloying, cold consolidated, and sintered under pressureless and vacuum conditions. The mechanical behavior was evaluated by sliding wear and microhardness tests. The structural characterization was carried out by X-ray diffraction and scanning electron microscopy. Results showed a clear wear resistance improvement in the aluminum matrix composite (Al-6061-Al2O3) in comparison with the Al-6061 alloy since nanoparticles act as a third hard body against wear. This behavior is attributed to the significant increment in hardness on the reinforced material, whose strengthening mechanisms mainly lie in a nanometric size and homogeneous dispersion of particles offering an effective load transfer from the matrix to the reinforcement. Discussion of the wear performance was in terms of a protective thin film oxide formation, where protective behavior decreases as a function of the sliding speed.


2021 ◽  
Vol 9 ◽  
Author(s):  
D.-Y. Park ◽  
N. V. Myung

CoPt and CoPtP thin films were synthesized using direct current (DC) aqueous electrodeposition from weak alkaline solutions. The basic plating solutions of binary CoPt thin films consisted of cobalt pyrophosphate [Co2P2O7] and chloroplatinic acid [H2PtCl6]. Various amounts of sodium hypophosphite [NaH2PO2] was added to deposit ternary CoPtP thin films. The film composition was adjusted by varying the several electrodeposition parameters including electrolyte composition, solution pH, and current density and correlated to their microstructure and magnetic property (i.e. coercivity and squareness). For the binary CoPt thin films, the maximum coercivities [in-plane coercivity (Hc,//) = ∼1,600 Oe, and perpendicular coercivity (Hc,⊥) = ∼2,500 Oe] were obtained from electrolytes containing 0.01 M H2PtCl6 + 0.04 M Co2P2O7 at current density (CD) of 7.5 mA cm−2. In the case of ternary CoPtP electrodeposits, the maximum coercivities (Hc,// = ∼2,600 Oe, and Hc,⊥ = ∼3,800 Oe) were achieved from baths containing 0.015 M H2PtCl6, 0.07 M Co2P2O7, 0.8 M NaH2PO2 at CD of 7.5 mA cm−2 and solution pH 9. It was suggested that microstructure and magnetic properties are affected not only by the type of substrate but also by chemical compositions and electrodeposition conditions.


2021 ◽  
Vol 127 (10) ◽  
Author(s):  
Mariana Correa Rossi ◽  
Eber de Santi Gouvêa ◽  
Montserrat Vicenta Haro Rodríguez ◽  
Margarida Juri Saeki ◽  
Angel Vicente Escuder ◽  
...  

2019 ◽  
Vol 25 (4) ◽  
pp. 466-470
Author(s):  
Xiaolian ZHANG ◽  
Chubin YANG ◽  
Hongxia LIU ◽  
Guanghuai PENG

In the present paper, an Al rod as liquid cathode was added into the SmF3-LiF-Sm2O3 molten salt system and subsequently the Al-Sm alloy was prepared by the liquid cathode electrolysis method. The effects of electrolysis temperature, cathode current density and electrolyte composition on the current efficiency were studied. The results demonstrated that the maximum content of Sm in the Al-Sm interalloy could reach up to 32.8 wt.%, whereas the alloy was mainly composed of the Al substrate, Al4Sm and Al3Sm phases. The current efficiency increased first subsequently decreased as the electrolysis temperature and cathode current density increased. Simultaneously, the electrolyte composition had a high impact on the current efficiency. When the mass ratio of SmF3and LiF was 4, the current efficiency was 62.8 %.


Sign in / Sign up

Export Citation Format

Share Document