Cavitation-erosion behavior and mechanism of high-velocity oxygen-fuel sprayed CuAlNiTiSi medium-entropy alloy coating

Author(s):  
Jie Cheng ◽  
Yuping Wu ◽  
Sheng Hong ◽  
Jiangbo Cheng ◽  
Lei Qiao ◽  
...  
2018 ◽  
Vol 929 ◽  
pp. 142-149 ◽  
Author(s):  
Myrna Ariati Mochtar ◽  
Wahyuaji Narottama Putra ◽  
Raditya Perdana Rachmansyah

Tube boiler operating condition initiates common problems that can occur as a problem in the wear resistance material. It leads to a decreased function of the material so that it is necessary to repair or replacement. High Velocity Oxygen Fuel (HVOF) is regarded as one of the effective methods to increase the wear resistance of the material. In this study, the materials were ASTM SA213-T91 as a material commonly used for boiler tube and JIS G 3132 SPHT-2 as an alternative material. In the early stages, both of specimens were given initial surface heating with temperature variations 0, 50, 100 and 150oC. The materials were then coated with Stellite-1 using HVOF method. The material were then characterized for the microstructure, porosity, hardness distribution, and wear resistant. The results showed that the coating Stellite-1 as a top coat with HVOF method can improve the performance of the material. Microhardness increases from 220 HV to 770 HV on ASTM SA213-T91, while on the substrate JIS G 3132 SPHT-2 the microhardness increased from 120 HV to 750 HV. Better wear resistance was achieved with increasing preheating [1]. Wear resistance of the materials increased from the range 3.69x10-7at 0°C preheating up to 0.89x10-7on a specimen with initial surface heating 150oC. Porosity also decreases with the increasing preheating temperature.


2019 ◽  
Vol 11 (5) ◽  
pp. 685-693 ◽  
Author(s):  
Zhidan Zhou ◽  
Xiubing Liang ◽  
Yongxiong Chen ◽  
Baolong Shen ◽  
Junchao Shang ◽  
...  

2016 ◽  
Vol 26 (3) ◽  
pp. 473-482 ◽  
Author(s):  
S. Y. Cui ◽  
Q. Miao ◽  
W. P. Liang ◽  
B. Z. Huang ◽  
Z. Ding ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
Kamil Gancarczyk

Bulk cobalt- and nickel-based metallic materials exhibit superior resistance to cavitation erosion and sliding wear. Thus, thermally deposited High-Velocity Oxygen Fuel (HVOF) coatings seem promising for increasing the wear resistance of the bulk metal substrate. However, the effect of chemical composition on the cavitation erosion and sliding wear resistance of M(Co,Ni)CrAlY and NiCrMo coatings has not yet been exhaustively studied. In this study, High-Velocity Oxygen Fuel (HVOF) coatings such as CoNiCrAlY, NiCoCrAlY, and NiCrMoFeCo were deposited on AISI 310 (X15CrNi25-20) steel coupons. The microstructure, hardness, phase composition and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The mechanism of wear was identified with the scanning electron microscope equipped with an energy dispersive spectroscopy (SEM-EDS) method. In comparison to the NiCrMoFeCo coating, the CoNiCrAlY and NiCoCrAlY coatings have a lower sliding and cavitation wear resistance.


Sign in / Sign up

Export Citation Format

Share Document