Performance Analysis of Dynamic Optimization Algorithms Using Relative Error Distance

Author(s):  
Stéfan A.G. van der Stockt ◽  
Gary Pamparà ◽  
Andries P. Engelbrecht ◽  
Christopher W. Cleghorn
2010 ◽  
Vol 1 (1) ◽  
pp. 16-38 ◽  
Author(s):  
Julien Lepagnot ◽  
Amir Nakib ◽  
Hamouche Oulhadj ◽  
Patrick Siarry

Many real-world problems are dynamic and require an optimization algorithm that is able to continuously track a changing optimum over time. In this paper, a new multiagent algorithm is proposed to solve dynamic problems. This algorithm is based on multiple trajectory searches and saving the optima found to use them when a change is detected in the environment. The proposed algorithm is analyzed using the Moving Peaks Benchmark, and its performances are compared to competing dynamic optimization algorithms on several instances of this benchmark. The obtained results show the efficiency of the proposed algorithm, even in multimodal environments.


Author(s):  
Esteban A. Hernandez-Vargas ◽  
Richard H. Middleton ◽  
Patrizio Colaneri ◽  
Franco Blanchini

2018 ◽  
Vol 17 (04) ◽  
pp. 1007-1046 ◽  
Author(s):  
Mohsen Moradi ◽  
Samad Nejatian ◽  
Hamid Parvin ◽  
Vahideh Rezaie

The swarm intelligence optimization algorithms are used widely in static purposes and applications. They solve the static optimization problems successfully. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments as well. The dynamic optimization problems indicate the ones whose solutions change over time. The artificial bee colony algorithm is one of the swarm intelligence optimization algorithms. In this study, a clustering and memory-based chaotic artificial bee colony algorithm, denoted by CMCABC, has been proposed for solving the dynamic optimization problems. A chaotic system has a more accurate prediction for future in the real-world applications compared to a random system, because in the real-world chaotic behaviors have emerged, but random behaviors havenot been observed. In the proposed CMCABC method, explicit memory has been used to save the previous good solutions which are not very old. Maintaining diversity in the dynamic environments is one of the fundamental challenges while solving the dynamic optimization problems. Using clustering technique in the proposed method can well maintain the diversity of the problem environment. The proposed CMCABC method has been tested on the moving peaks benchmark (MPB). The MPB is a good simulator to evaluate the efficiency of the optimization algorithms in dynamic environments. The experimental results on the MPB reveal the appropriate efficiency of the proposed CMCABC method compared to the other state-of-the-art methods in solving dynamic optimization problems.


Sign in / Sign up

Export Citation Format

Share Document