Enhanced electrical conductivity of polyaniline film by a low magnetic field

2010 ◽  
Vol 160 (7-8) ◽  
pp. 728-731 ◽  
Author(s):  
Jae-Kook Park ◽  
O-Pil Kwon ◽  
Eun-Young Choi ◽  
Chan-Keun Jung ◽  
Suck-Hyun Lee
2008 ◽  
Vol 2 (2) ◽  
pp. 105-109
Author(s):  
Nafdey Renuka ◽  
◽  
Kelkar Deepali ◽  

Polyaniline is synthesized chemically under the influence of low magnetic field of intensity 1KGauss. The effect of magnetic field during the synthesis process causes enhancement of electrical conductivity by two orders of magnitude. This increased electrical conductivity depends on the polymer chain ordering, as well as structure and morphology of the reported polymer.


Alloy Digest ◽  
1971 ◽  
Vol 20 (10) ◽  

Abstract Carpenter HYMU 80 is an unoriented 80% nickel-iron-molybdenum alloy which offers extremely high initial permeability and maximum permeability with minimum hysteresis loss at low magnetic field strengths. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-5. Producer or source: Carpenter Technology Corporation. Originally published May 1953, revised October 1971.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


1995 ◽  
Vol 148 (1-2) ◽  
pp. 329-330 ◽  
Author(s):  
H. Kano ◽  
A. Okabe ◽  
K. Kagawa ◽  
A. Suzuki ◽  
T. Yaoi ◽  
...  

2007 ◽  
Vol 06 (03n04) ◽  
pp. 173-177
Author(s):  
YU. G. ARAPOV ◽  
S. V. GUDINA ◽  
G. I. HARUS ◽  
V. N. NEVEROV ◽  
N. G. SHELUSHININA ◽  
...  

The resistivity (ρ) of low mobility dilute 2D electron gas in an n- InGaAs / GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8–70 K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ħ > 0.1–3.5) for our samples, and the electron density is on an "insulating" side of the so-called B = 0 2D metal–insulator transition. We show that the observed features of localization and Landau quantization in a vicinity of the low magnetic-field-induced insulator–quantum Hall liquid transition is due to the σxy(T) anomalous T-dependence.


Sign in / Sign up

Export Citation Format

Share Document