Anti-corrosion properties of oligoaniline modified silica hybrid coatings for low-carbon steel

2018 ◽  
Vol 235 ◽  
pp. 61-70 ◽  
Author(s):  
Yuwei Ye ◽  
Dawei Zhang ◽  
Zhiyong Liu ◽  
Wei Liu ◽  
Haichao Zhao ◽  
...  
2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 190 ◽  
Author(s):  
Young-Wook Cho ◽  
Young-Joon Kang ◽  
Ju-Hwan Baek ◽  
Jeong-Ho Woo ◽  
Young-Rae Cho

A role of oxi-nitrocarburizing technique for low-carbon steel was intensively evaluated as a means of reducing the problem of corrosion in gas nitrocarburizing, which is a vital disadvantage of gas nitrocarburizing. Oxi-nitrocarburizing was carried out by a two-step process: Gas nitrocarburizing at 560 °C and oxidation. In order to characterize two different methods of oxi-nitrocarburizing, oxidation was performed under two different conditions: Air and steam as oxygen sources. To analyze the microstructural, physical, and chemical properties of the thin oxide layer and nitride layer, which are the surface hardened layers formed on low-carbon steel by oxi-nitrocarburizing, several methods, such as electron probe microanalysis (EPMA), electron backscattered diffraction (EBSD), scanning electron microscopy (SEM), nanoindentation tests, and potentiodynamic polarization tests were applied. The results indicated that the EPMA and EBSD methods are powerful techniques for the analysis of microstructure, such as phase analysis and metallic element distribution in the oxide layer of magnetite and compound layer of ε-phase and γ'-phase, for oxi-nitrocarburized low-carbon steel. Additionally, the nanohardness using the nanoindentation test and corrosion resistance using the potentiodynamic polarization test for the oxi-nitrocarburized specimens are useful methods to understand the mechanical and corrosion properties of the surface hardened layer.


2019 ◽  
Vol 44 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Davies Babatunde Alonge ◽  
Timothy Olakunle Betiku ◽  
Emmanuel Ohiomomo Igbafen ◽  
Benjamin Omotayo Adewuyi

The effect of Post Weld Heat Treatment (PWHT) on the microstructure, mechanical and corrosion properties of low carbon steel have been investigated. The welding process was conducted on butt joint using Manual Metal Arc Welding (MMAW) techniques at a welding voltage of 23 V and welding current of 110 A with the use of E6013 and 3.2 mm diameter as filler material. Heat treatment through full annealing was carried out on the welded low carbon steel. The mechanical properties (hardness, impact toughness and tensile properties) of the AW and PWHT samples were determined. The microstructure of the AW and PWHT samples was characterized by means of an optical microscopy. Corrosion behavior of the sample was studied in3.5 wt.% NaCl environment using potentiodynamic polarization method. The results showed that the AW samples has good combination of mechanical and corrosion properties. The microstructure revealed fine grains of pearlite randomly dispersed in the ferrite for the AW base metal (BM) sample while agglomerated and fine particle of epsilon carbide or cementite randomly dispersed on the ferritic phase of the heat affected zone (HAZ) and weld metal (WM), of the AW, respectively. The PWHT samples shows that the annealing process allow diffusion and growth of the fine grains into partial coarse grains of ferrite and pearlite which did not encourage improvement of the properties. Therefore, it was concluded that the welding parameters put in place during welding of the low carbon steel are optimum for quality weld.


2011 ◽  
Vol 396-398 ◽  
pp. 1736-1743
Author(s):  
Elena Kornienko ◽  
Ralf Ossenbrink ◽  
Vesselin Michailov

In this work structured sheet metals were investigated using electrochemical measurement techniques. The main purpose is obtaining fundamental information about the corrosion resistance of structured sheet metals in comparison to smooth sheet metals as well determination of the influence of the structuring process on the corrosion properties. The corrosion resistance of structured sheet metals is affected by manufacturing process. One of the main influence factors is the change of the surface roughness. In this study the low carbon steel DC04 and the stainless steel 304 (X5CrNi18-10) were investi-gated. The electrochemical tests were carried out in 3%-NaCl solution. Potentiodynamic linear polarization was used to determine such electrochemical characteristics as the free corrosion potential, the corrosion current, the pitting and protection potential. Furthermore, the corrosion rate was calculated for smooth and structured sheet metals of the low carbon steel DC04. For the stainless steel 304 the pitting density was estimated. The surface roughness was measured for both materials. The electrochemical corrosion tests show a small difference in the corrosion behaviour of structured and smooth sheet metals. Structured sheet metals have a lower corrosion resistance than smooth sheet metals. The steel DC04 shows the worst corrosion properties at the structure location “negative” in comparison to the structure location “positive”. The corrosion resistance of the stainless steel 304 is better at the structure location “negative” than at the structure location “positive”. Moreover, the results show the correlation between the surface roughness and the corrosion resistance for structured sheet metals.


2015 ◽  
Vol 66 (11) ◽  
pp. 1223-1231 ◽  
Author(s):  
P. Balan ◽  
E. S. Chan ◽  
M. K. Harun ◽  
V. Swamy ◽  
R. K. Singh Raman

2019 ◽  
Vol 44 (2) ◽  
pp. 13-19
Author(s):  
Isiaka Oladele ◽  
Davies Alonge ◽  
Timothy Betiku ◽  
Abel Barnabas ◽  
S. Shittu

Experimental investigations were carried out to study the effect of weld joint designs and post weld heat treatment (PWHT) on mechanical and corrosion properties of low carbon steel. Butt, bevel and half-lap joints were produced with a voltage of 20 V and current of 110 A with the use of 3.2 mm diameter electrode E6013. Full annealing was carried out on part of the welded samples in order to consider the possibility of post weld heat treatment for better performance. The mechanical properties (tensile, hardness, and impact toughness) were studied for both the as welded (AW) and PWHT samples as well as the corrosion performance in a natural sea water environment containing 3.5 wt.% NaCl using potentiodynamic polarization method. The microstructure of the AW and PWHT samples of the welded joints with the most promising mechanical and corrosion properties were then characterized by means of an optical microscopy. The results obtained reveals that the bevel joint followed by half lap joint and the butt joint of the as weld samples gave the best combination of the mechanical properties considered. On the other hand, the corrosion properties of the butt joint were superior to that of the bevel and half lap joint, respectively in the PWHT condition as compared to the AW samples. This implies that PWHT improves the corrosion resistance of the welded steel joints.


Sign in / Sign up

Export Citation Format

Share Document