Detection of 17β-estradiol in water samples by a novel double-layer molecularly imprinted film-based biosensor

Talanta ◽  
2015 ◽  
Vol 141 ◽  
pp. 279-287 ◽  
Author(s):  
Yuan Tan ◽  
Tianxin Wei
2017 ◽  
Vol 9 (36) ◽  
pp. 5356-5364 ◽  
Author(s):  
Y. Wang ◽  
S. Q. Jiao ◽  
X. L. Chen ◽  
T. X. Wei

Herein, an efficient approach towards obtaining molecularly imprinted polymer (MIP) film for the detection of 17β-estradiol (E2) with water-compatible properties using a reversible addition–fragmentation chain transfer (RAFT) via photo-initiation is described.


2020 ◽  
Vol 16 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Youyuan Peng ◽  
Qiaolan Ji

Background: As a broad-spectrum antibiotic of the sulfonamide family, Sulfadimethoxine (SDM) has been widely utilized for therapeutic and growth-promoting purposes in animals. However, the use of SDM can cause residual problems. Even a low concentration of SDM in the aquatic system can exert toxic effects on target organisms and green algae. Therefore, the quantitation of SDM residues has become an important task. Methods: The present work describes the development of a sensitive and selective electrochemical sensor for sulfadimethoxine based on molecularly imprinted poly(o-aminophenol) film. The molecular imprinted polymer film was fabricated by electropolymerizing o-aminophenol in the presence of SDM after depositing carboxylfunctionalized multi-walled carbon nanotubes onto a glassy carbon electrode surface. SDM can be quickly removed by electrochemical methods. The imprinted polymer film was characterized by cyclic voltammetry, differential pulse voltammetry and scanning electron microscopy. Results: Under the selected optimal conditions, the molecularly imprinted sensor shows a linear range from 1.0 × 10-7 to 2.0 × 10-5 mol L-1 for SDM, with a detection limit of 4.0 × 10-8 mol L-1. The sensor was applied to the determination of SDM in aquaculture water samples successfully, with the recoveries ranging from 95% to 106%. Conclusion: The proposed sensor exhibited a high degree of selectivity for SDM in comparison to other structurally similar molecules, along with long-term stability, good reproducibility and excellent regeneration capacity. The sensor may offer a feasible strategy for the analysis of SDM in aquaculture water samples.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


2003 ◽  
Vol 377 (2) ◽  
pp. 257-261 ◽  
Author(s):  
M. Carmen Blanco-L�pez ◽  
Mar�a-Jes�s Lobo-Casta��n ◽  
Arturo J. Miranda-Ordieres ◽  
Paulino Tu��n-Blanco

RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17293-17299 ◽  
Author(s):  
Wei Kou ◽  
Hua Zhang ◽  
Aisha Bibi ◽  
Mufang Ke ◽  
Jing Han ◽  
...  

A simple, fast and high-sensitivity method for quantification of fluoroquinolones in environmental water samples using MIPs-iEESI-MS.


Sign in / Sign up

Export Citation Format

Share Document