Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors

Talanta ◽  
2022 ◽  
pp. 123222
Author(s):  
Xiaonan Zheng ◽  
Yucheng Sun ◽  
Haifang Li ◽  
Nan Li ◽  
Xueji Zhang ◽  
...  
2013 ◽  
Vol 51 (01) ◽  
Author(s):  
J Kah ◽  
J Schrader ◽  
A Wüstenberg ◽  
G Tiegs ◽  
G Sass
Keyword(s):  

Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06252
Author(s):  
Wei Chen ◽  
Shihyun Park ◽  
Chrishma Patel ◽  
Yuxin Bai ◽  
Karim Henary ◽  
...  

2010 ◽  
Vol 75 (7) ◽  
pp. 825-831 ◽  
Author(s):  
T. V. Kulakovskaya ◽  
L. P. Lichko ◽  
V. M. Vagabov ◽  
I. S. Kulaev

1965 ◽  
Vol 240 (4) ◽  
pp. 1754-1757
Author(s):  
K. Janakidevi ◽  
Virginia C. Dewey ◽  
G.W. Kidder

2021 ◽  
Vol 22 (11) ◽  
pp. 6022
Author(s):  
Sylwia Ciesielska ◽  
Izabella Slezak-Prochazka ◽  
Patryk Bil ◽  
Joanna Rzeszowska-Wolny

In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yong Huang ◽  
Rut Tejero ◽  
Vivian K. Lee ◽  
Concetta Brusco ◽  
Theodore Hannah ◽  
...  

AbstractInfiltrative growth is a major cause of high lethality of malignant brain tumors such as glioblastoma (GBM). We show here that GBM cells upregulate guidance receptor Plexin-B2 to gain invasiveness. Deletion of Plexin-B2 in GBM stem cells limited tumor spread and shifted invasion paths from axon fiber tracts to perivascular routes. On a cellular level, Plexin-B2 adjusts cell adhesiveness, migratory responses to different matrix stiffness, and actomyosin dynamics, thus empowering GBM cells to leave stiff tumor bulk and infiltrate softer brain parenchyma. Correspondingly, gene signatures affected by Plexin-B2 were associated with locomotor regulation, matrix interactions, and cellular biomechanics. On a molecular level, the intracellular Ras-GAP domain contributed to Plexin-B2 function, while the signaling relationship with downstream effectors Rap1/2 appeared variable between GBM stem cell lines, reflecting intertumoral heterogeneity. Our studies establish Plexin-B2 as a modulator of cell biomechanics that is usurped by GBM cells to gain invasiveness.


Sign in / Sign up

Export Citation Format

Share Document