Evaluating the impact of big data analytics usage on the decision-making quality of organizations

Author(s):  
Lei Li ◽  
Jiabao Lin ◽  
Ye Ouyang ◽  
Xin (Robert) Luo
2019 ◽  
Vol 32 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Santanu Mandal

Purpose The importance of big data analytics (BDA) on the development of supply chain (SC) resilience is not clearly understood. To address this, the purpose of this paper is to explore the impact of BDA management capabilities, namely, BDA planning, BDA investment decision making, BDA coordination and BDA control on SC resilience dimensions, namely, SC preparedness, SC alertness and SC agility. Design/methodology/approach The study relied on perceptual measures to test the proposed associations. Using extant measures, the scales for all the constructs were contextualized based on expert feedback. Using online survey, 249 complete responses were collected and were analyzed using partial least squares in SmartPLS 2.0.M3. The study targeted professionals with sufficient experience in analytics in different industry sectors for survey participation. Findings Results indicate BDA planning, BDA coordination and BDA control are critical enablers of SC preparedness, SC alertness and SC agility. BDA investment decision making did not have any prominent influence on any of the SC resilience dimensions. Originality/value The study is important as it addresses the contribution of BDA capabilities on the development of SC resilience, an important gap in the extant literature.


2021 ◽  
Author(s):  
Shubhashish Goswami ◽  
Abhimanyu Kumar

Abstract The present elaboration of Big-data research studies relying upon Deep-learning methods had revitalized the decision-making mechanism in the business sectors and the enterprise domains. The firms' operational parameters also have the dependency of the Big-data analytics phase, their way of managing the data, and to evolve the outcomes of Big-data implementation by using the Deep-learning algorithms. The present enhancements in the Deep-learning approaches in Big-data applications facilitate the decision-making process such as the information-processing to the employees, analytical potentials augmentation, and in the transition to having more innovative work. In this DL-approach, the robust-patterns of the data-predictions resulted from the unstructured information by conceptualizing the Decision-making methods. Hence this paper elaborates the above statements stating the impact of the Deep-learning process utilizing the Big-data to operate in the enterprise and Business sectors. Also this study provides a comprehensive survey of all the Deep-learning techniques illustrating the efficiency of Big-Data processing on having the impacts of operational parameters, concentrating the data-dimensionality factors and the Big-data complications rectifying by utilizing the DL-algorithms, usage of Machine-learning or deep-learning process for the decision-making mechanism in the Enterprise sectors and business sectors, the predictions of the Big-data analytics resulting to the decision parameters within the organisations, and in the management of larger scale of datasets in Big-data analytics processing by utilizing the Deep-learning implementations. The comparative analysis of the reviewed studies has also been described by comparing existing approaches of Deep-learning methodologies in employing Big-data analytics.


Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 66
Author(s):  
Devon S. Johnson ◽  
Debika Sihi ◽  
Laurent Muzellec

This study examines the experience of marketing departments to become fully data-driven decision-making organizations. We evaluate an organic approach of departmental sensemaking and an administered approach by which top management increase the influence of analytics skilled employees. Data collection commenced with 15 depth interviews of marketing and analytics professionals in the US and Europe involved in the implementation of big data analytics (BDA) and was followed by a survey data of 298 marketing and analytics middle management professionals at United States based firms. The survey data supports the logic that BDA sensemaking is initiated by top management and is comprised of four primary activities: external knowledge acquisition, improving digitized data quality, big data analytics experimentation and big data analytics information dissemination. Top management drives progress toward data-driven decision-making by facilitating sensemaking and by increasing the influence of BDA skilled employees. This study suggests that while a shift toward enterprise analytics increases the quality of resource available to the marketing department, this approach could stymie the quality of marketing insights gained from BDA. This study presents a model of how to improve the quality of marketing insights and improve data-driven decision-making.


2020 ◽  
Vol 4 (2) ◽  
pp. 5 ◽  
Author(s):  
Ioannis C. Drivas ◽  
Damianos P. Sakas ◽  
Georgios A. Giannakopoulos ◽  
Daphne Kyriaki-Manessi

In the Big Data era, search engine optimization deals with the encapsulation of datasets that are related to website performance in terms of architecture, content curation, and user behavior, with the purpose to convert them into actionable insights and improve visibility and findability on the Web. In this respect, big data analytics expands the opportunities for developing new methodological frameworks that are composed of valid, reliable, and consistent analytics that are practically useful to develop well-informed strategies for organic traffic optimization. In this paper, a novel methodology is implemented in order to increase organic search engine visits based on the impact of multiple SEO factors. In order to achieve this purpose, the authors examined 171 cultural heritage websites and their retrieved data analytics about their performance and user experience inside them. Massive amounts of Web-based collections are included and presented by cultural heritage organizations through their websites. Subsequently, users interact with these collections, producing behavioral analytics in a variety of different data types that come from multiple devices, with high velocity, in large volumes. Nevertheless, prior research efforts indicate that these massive cultural collections are difficult to browse while expressing low visibility and findability in the semantic Web era. Against this backdrop, this paper proposes the computational development of a search engine optimization (SEO) strategy that utilizes the generated big cultural data analytics and improves the visibility of cultural heritage websites. One step further, the statistical results of the study are integrated into a predictive model that is composed of two stages. First, a fuzzy cognitive mapping process is generated as an aggregated macro-level descriptive model. Secondly, a micro-level data-driven agent-based model follows up. The purpose of the model is to predict the most effective combinations of factors that achieve enhanced visibility and organic traffic on cultural heritage organizations’ websites. To this end, the study contributes to the knowledge expansion of researchers and practitioners in the big cultural analytics sector with the purpose to implement potential strategies for greater visibility and findability of cultural collections on the Web.


2020 ◽  
Vol 98 ◽  
pp. 68-78 ◽  
Author(s):  
Aseem Kinra ◽  
Samaneh Beheshti-Kashi ◽  
Rasmus Buch ◽  
Thomas Alexander Sick Nielsen ◽  
Francisco Pereira

2020 ◽  
Vol 17 (12) ◽  
pp. 5605-5612
Author(s):  
A. Kaliappan ◽  
D. Chitra

In today’s world, an immense measure of information in the form of unstructured, semi-structured and unstructured is generated by different sources all over the world in a tremendous amount. Big data is the termed coined to address these enormous amounts of data. One of the major challenges in the health sector is handling a high-volume variety of data generated from diverse sources and utilizing it for the wellbeing of human. Big data analytics is one of technique designed to operate with monstrous measures of information. The impact of big data in healthcare field and utilization of Hadoop system tools for supervising the big data are deliberated in this paper. The big data analytics role and its theoretical and conceptual architecture include the gathering of diverse information’s such as electronic health records, genome database and clinical decisions support systems, text representation in health care industry is investigated in this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marwa Rabe Mohamed Elkmash ◽  
Magdy Gamal Abdel-Kader ◽  
Bassant Badr El Din

Purpose This study aims to investigate and explore the impact of big data analytics (BDA) as a mechanism that could develop the ability to measure customers’ performance. To accomplish the research aim, the theoretical discussion was developed through the combination of the diffusion of innovation theory with the technology acceptance model (TAM) that is less developed for the research field of this study. Design/methodology/approach Empirical data was obtained using Web-based quasi-experiments with 104 Egyptian accounting professionals. Further, the Wilcoxon signed-rank test and the chi-square goodness-of-fit test were used to analyze data. Findings The empirical results indicate that measuring customers’ performance based on BDA increase the organizations’ ability to analyze the customers’ unstructured data, decrease the cost of customers’ unstructured data analysis, increase the ability to handle the customers’ problems quickly, minimize the time spent to analyze the customers’ data and obtaining the customers’ performance reports and control managers’ bias when they measure customer satisfaction. The study findings supported the accounting professionals’ acceptance of BDA through the TAM elements: the intention to use (R), perceived usefulness (U) and the perceived ease of use (E). Research limitations/implications This study has several limitations that could be addressed in future research. First, this study focuses on customers’ performance measurement (CPM) only and ignores other performance measurements such as employees’ performance measurement and financial performance measurement. Future research can examine these areas. Second, this study conducts a Web-based experiment with Master of Business Administration students as a study’s participants, researchers could conduct a laboratory experiment and report if there are differences. Third, owing to the novelty of the topic, there was a lack of theoretical evidence in developing the study’s hypotheses. Practical implications This study succeeds to provide the much-needed empirical evidence for BDA positive impact in improving CPM efficiency through the proposed framework (i.e. CPM and BDA framework). Furthermore, this study contributes to the improvement of the performance measurement process, thus, the decision-making process with meaningful and proper insights through the capability of collecting and analyzing the customers’ unstructured data. On a practical level, the company could eventually use this study’s results and the new insights to make better decisions and develop its policies. Originality/value This study holds significance as it provides the much-needed empirical evidence for BDA positive impact in improving CPM efficiency. The study findings will contribute to the enhancement of the performance measurement process through the ability of gathering and analyzing the customers’ unstructured data.


Sign in / Sign up

Export Citation Format

Share Document